

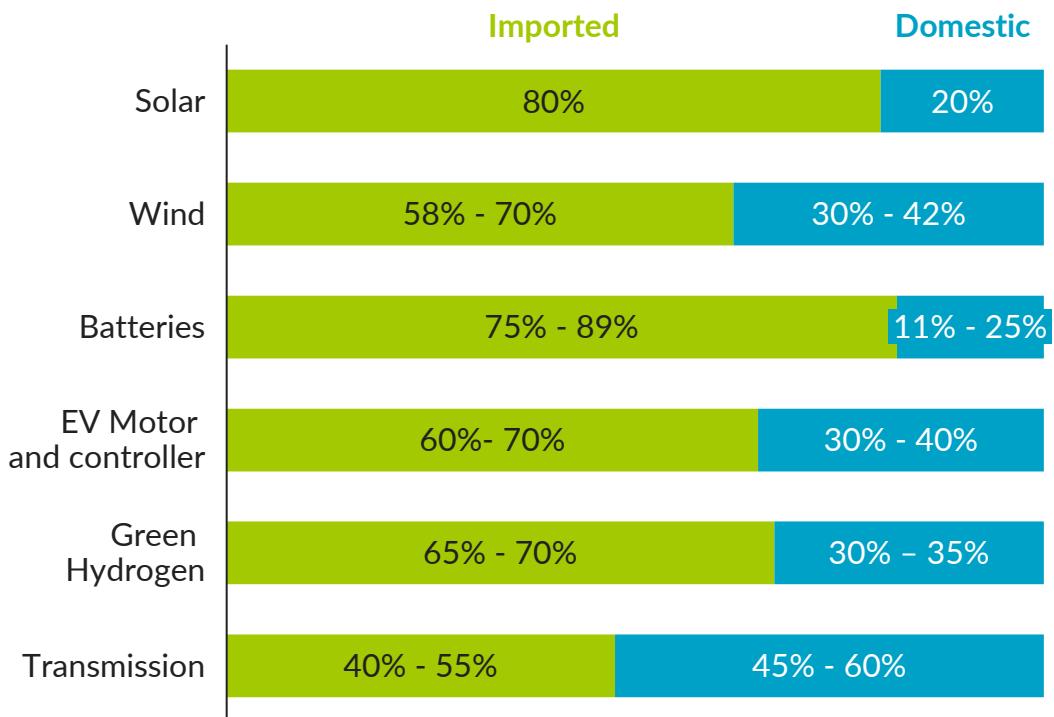
Bharat Cleantech Manufacturing Platform: E-mobility Indigenisation Pathways

Accelerating an Aatmanirbhar, Green and Viksit
Bharat

As India rapidly moves towards meeting its NDCs, indigenisation of cleantech manufacturing is critical for an Aatmanirbhar and Viksit Bharat

India has national targets and projections across renewable energy and e-mobility for 2030...

 300 GW Solar
installed capacity¹

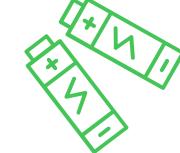

 30% EV sales
penetration²

 100 GW Wind
installed capacity³

 5 MTPA Green
Hydrogen
production⁴

... but cleantech supply chains are heavily import-dependent and need to be indigenised for an Aatmanirbhar Bharat

Cleantech manufacturing import dependence across the value chain, 2023




Source: (1) [MNRE](#); Solar capacity projection extrapolated from CEA's 2032 Solar capacity projections, assuming linear growth in capacity; (2) [NITI Aayog](#); (3) [ET](#); (4) [MNRE - NGHM](#); MNRE, Ministry of Power; Economics Times; BNEF's installed and announced capacity; IEA, India - World Energy Investment 2024 - Analysis; NITI, India's Power Sector | Capacity & Generation Mix; PIB, India's Ethanol Push: A Path to Energy Security, CEEW, Strengthen India's Clean supply chain, 2024; Bain, India Electric Vehicle Policy circle; Economist Impact, Scaling clean energy: financing and transition strategies for India's sustainable future

The Platform could support the National Manufacturing Mission to target at least 50% indigenisation of cleantech manufacturing value chains by 2030 enabling net-zero ambition with indigenous production

The Platform's potential to accelerate development of incremental indigenous capacity can be observed across sectors

Sector-wise goals

	Solar	Wind	BESS	E-mobility	Green Hydrogen	Transmission
Installed capacity						
2030 targets	300 GW ¹	100 GW ²	230-240 GWh ³	30@30 ⁴	5 MTPA ⁶	648,190 ⁷ ckm
% value chain indigenisation*						
Current levels (est.)	~20%	~35%	~20%	~35% ⁵	~35%	~55%
2030 target (Proposed)	~50%	~60%	~45%	~50%	~60%	~70%

May decline due to shifting and unstable demand of domestic components amid intensified global competition

Note: *Indigenisation is domestic value contribution across cleantech value chain from raw materials to end production for all components; : (1) [MNRE](#); (2) [ET](#); (3) Estimated requirements under National Electricity Plan (NEP) 2023 of CEA; (4) [NITI Aayog](#); (5) For EV Motors and controllers; (6) [MNRE - NGHM](#) (7) 2032 target from National Electricity Plan Volume II – Transmission of CEA

Source: MNRE, Ministry of Power; Economics Times; BNEF's installed and announced capacity; IEA, India – World Energy Investment 2024 – Analysis; NITI, India's Power Sector Capacity & Generation Mix; PIB, India's Ethanol Push: A Path to Energy Security, NEP 2023 of CEA; EV Reporter, India's electric vehicle supply chain landscape | An overview

A detailed strategy and action plan for the focus sectors would be developed to achieve these goals and objectives and build the cleantech indigenisation pathways for these sectors

Sector-wise gaps would be identified and addressed with all stakeholders across each cross-cutting theme in alignment with the National Manufacturing Mission

Enablers:		Sectors					
Cross-cutting themes	Policy recommendations; Trade partnerships; Public and private stakeholder recommendations; Demand and supply drivers; Leveraging AI for Climate and cleantech manufacturing	Solar	Wind	BESS	E-mobility	Green Hydrogen	Transmission
	Demand Acceleration Drive demand and adoption of output, incl. Quality Control Orders (QCOs)						
	R&D Ecosystem Drive technology sharing, adoption and indigenous R&D						
	Upstream Raw Materials Streamline raw material sourcing (e.g. critical rare earth elements; bio-energy feedstock etc.)						
	Capex & Infra Address machinery sourcing & infrastructure requirements (e.g., grid connectivity)						
	Skilled Workforce Bridge skilling gaps for specialized and non-specialized workforce						
	Financing Identify financial instruments and mechanisms to reduce the funding gap Identify levers to improve Ease of Doing Business to attract investments						

TABLE OF

Contents

1. Current Landscape and indigenisation opportunities: E-Mobility sector
2. E-Mobility Indigenisation Pathway

SECTION ONE

CURRENT E-MOBILITY LANDSCAPE: GLOBAL AND INDIA

EVs comprise a range of technologies that can serve as alternative to fossil fuel vehicles to deliver cleaner mobility for people and goods

HEV
Hybrid electric vehicle

Instead of using an external plug to charge the vehicle, the electricity generated by the HEV's braking system is used to recharge the battery. This is called 'regenerative braking' and is also used in BEVs, PHEVs and FCEVs.

PHEV
Plug-in hybrid electric vehicle

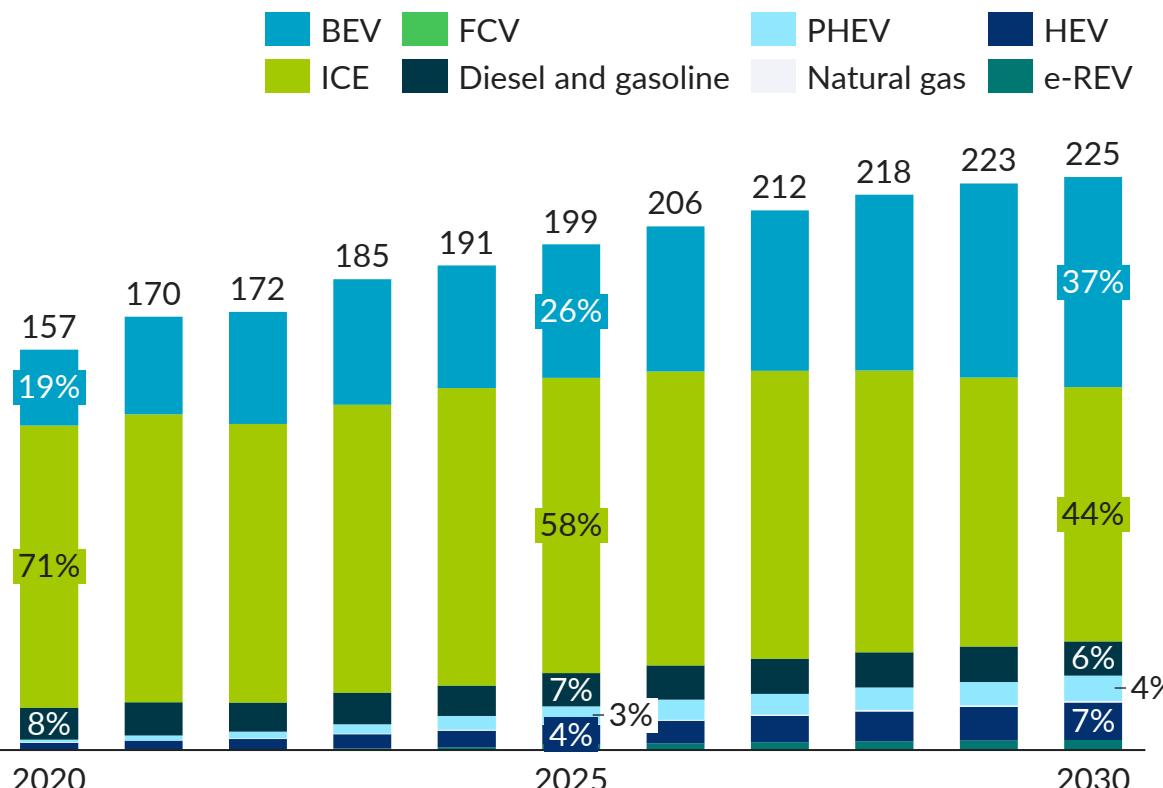
Powered by a combination of liquid fuel and electricity. They can be charged with electricity using a plug but also contain an internal combustion engine that uses liquid fuel.

BEV
Battery Electric Vehicle

Fully-electric, meaning they are solely powered by electricity and do not have a petrol, diesel or LPG engine, fuel tank or exhaust pipe. BEVs are also known as 'plug-in' EVs as they use an external electrical charging outlet to charge the battery.

FCEV
Fuel Cell Vehicle

Use a fuel cell instead of a battery, or in combination with a battery or supercapacitor, to power their electric motors. FCEVs are typically fueled by hydrogen and usually provide greater range than BEVs.

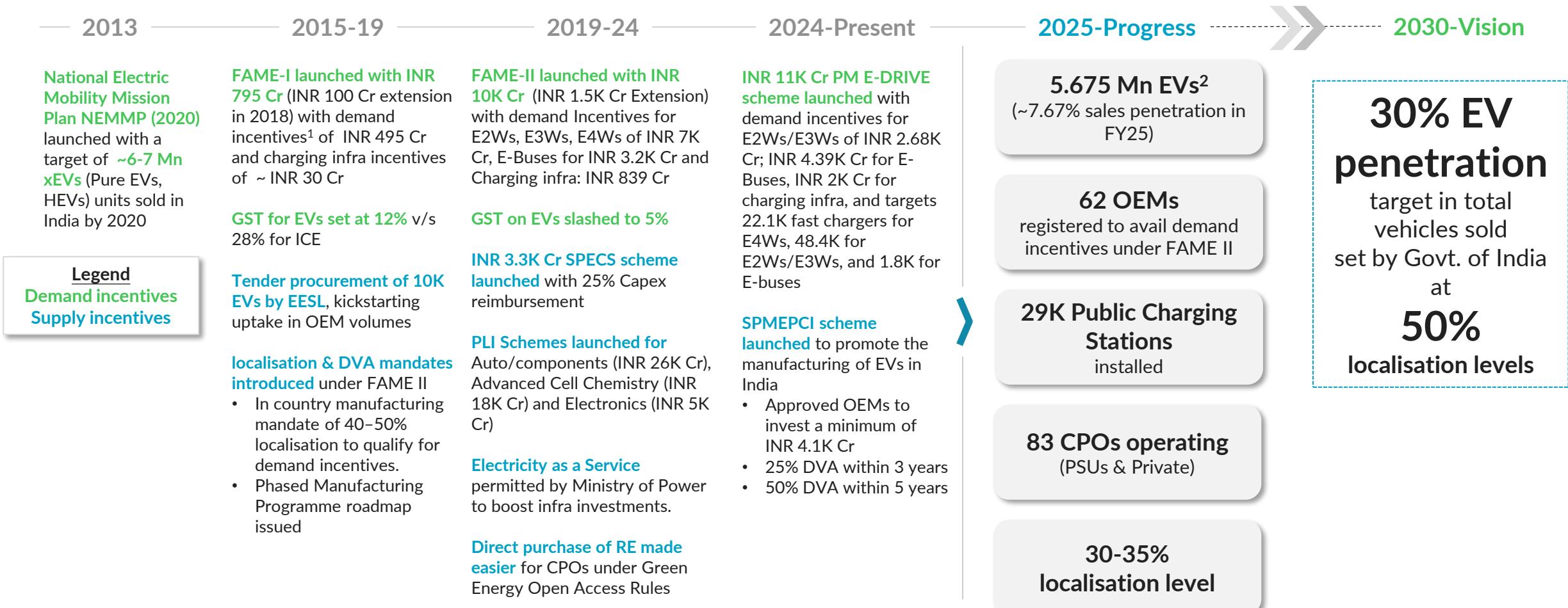


Current focus¹

Globally, one in five vehicles sold in 2020 was an electric vehicle¹; by 2030, BEVs are expected to make up to 37% of total annual automotive sales

Global penetration of BEVs² in annual vehicle sales has risen to ~25% and could further grow to 37% by 2030

Global vehicle sales by drivetrain type, Million vehicles, 2020-2030

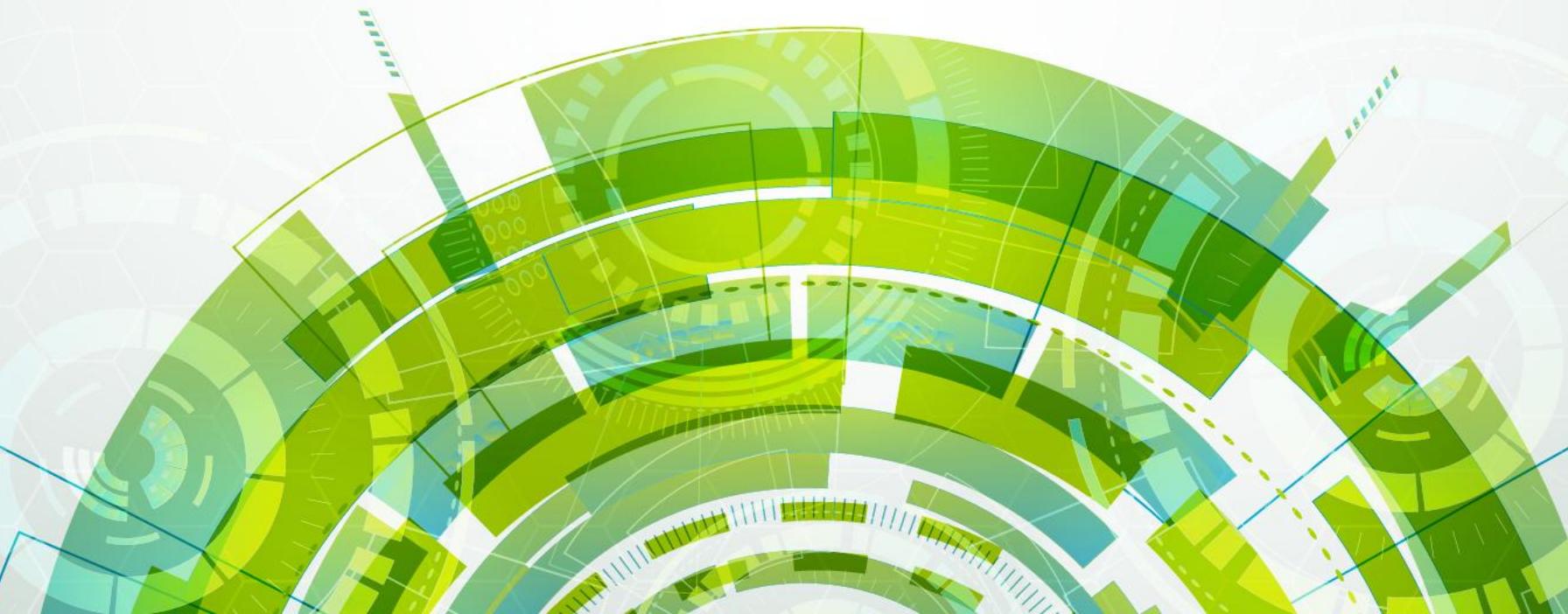

Penetration is mainly driven by a limited set of countries, with China, Germany and UK as frontrunners

Global status on adoption of Battery Electric Vehicles

Stage	BEV Share (%)	Number of Countries	Leading Countries
Mass Adoption	>15%	25	China, Germany, UK
Tipping Point	5%-15%	25	USA, South Korea, India
Early Adoption	2%-5%	10	Brazil, Poland
Nascent	<2%	90	Japan, Mexico, Philippines

Government of India has set ambitious targets to reach 30% EV penetration by 2030 and 50% localisation; several policy measures are accelerating this shift

The existing policies and market drivers have led to a 7.7% sales penetration of EVs in FY 25 and the Government envisions to reach a 30% sales penetration by 2030



(1) Segment based subsidy and not per kWh; ~ Bureau of Energy Efficiency, Dalberg Analysis (2) Total stock of EVs till 2025

Source: PIB MHI, FAME India Scheme, 2019; PIB MHI, Scheme outlay of FAME India Scheme Phase II, 2024; MHI, Operational Guidelines for PM E-DRIVE Scheme, 2024; VAHAN Dashboard; PIB MHI, Initiatives to improve EV sector, 2025; PIB MHI, MHI sanctions 7432 EV Charging Stations under FAME-II, 2023; Bureau of Energy Efficiency, Charging Point Operators, Accessed October 2025; PIB MHI, Adequacy of EV Charging Stations, 2025; PIB, Wheels of Change: India's Electric Leap for Green Mobility, 2025

SECTION TWO

EV INDIGENISATION PATHWAYS FOR INDIA

Current localisation across EV manufacturing in India is at 30–35%, though it varies across components; domestic capacity additions have been announced by several large players

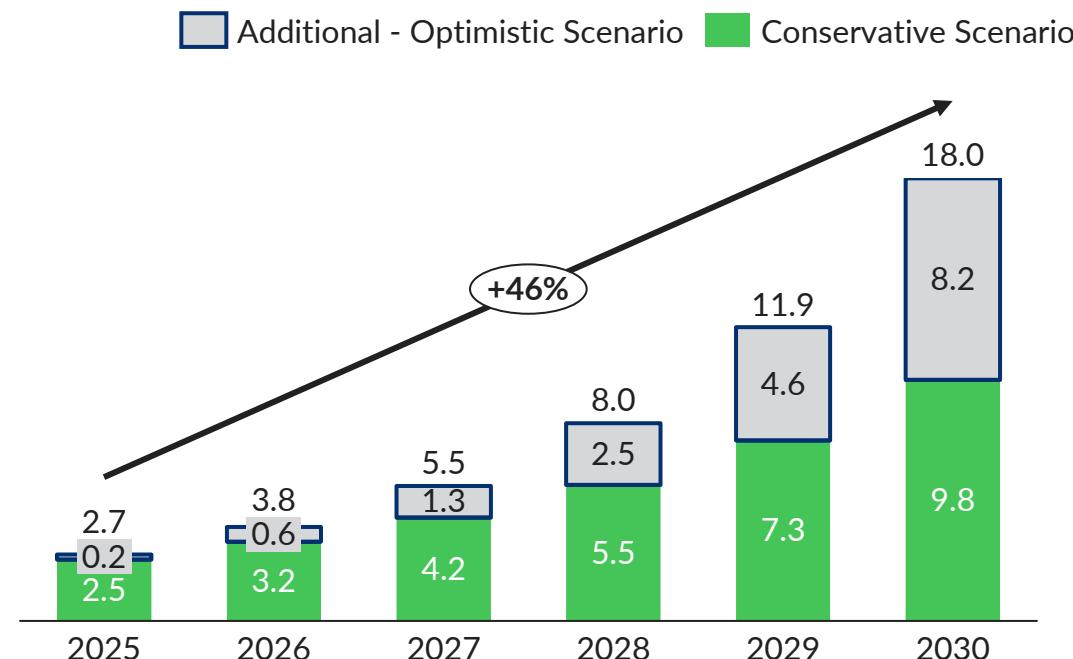
ILLUSTRATIVE

Localisation across the EV value chain is mainly driven by Chassis and Body manufacturing

Key components						
BOM Split	Battery Pack	BMS	Motors	Power Electronics	Chassis and Body	Others
Current component DVA ²	35-40%	5-10%	5-15%	10-20%	15-25%	10-15%

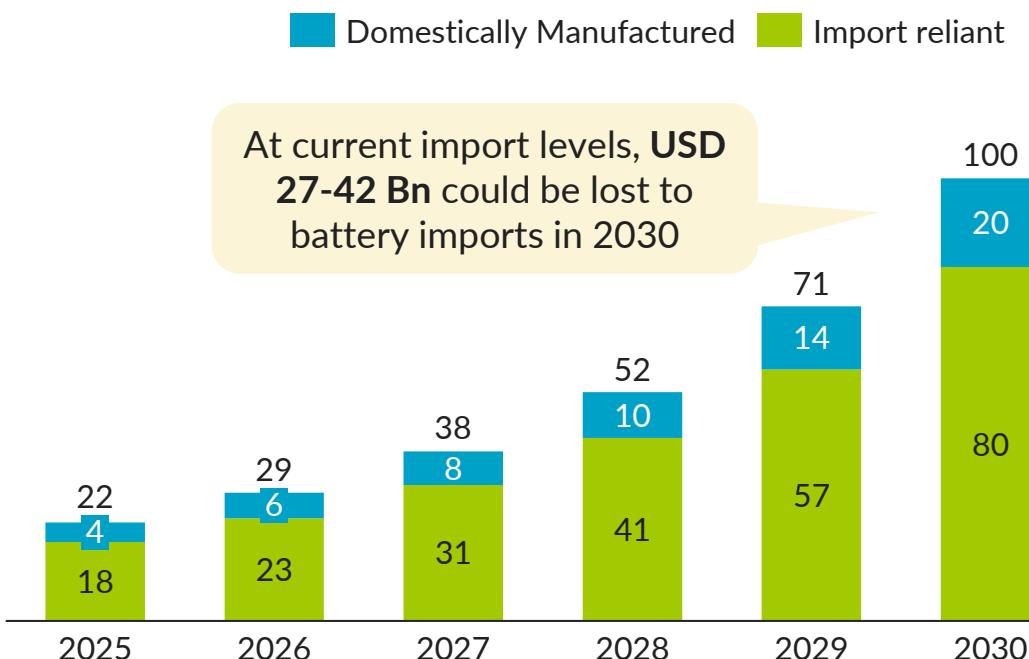
Green and brown-field investments being announced to improve current levels of localisation

Key announced investments	133 GW incremental Battery Pack capacity announced over 19 GW existing capacity, by Li Energy, PureEV, etc.	Xbattery raised ~ INR 20 Cr to locally develop BMS, Ashok Leyland's INR 5,000 Cr investment in Battery ecosystem includes BMS	Japanese Auto-manufacturers, DENSO Corp and Nidec announced total ~ INR 800 Cr investment in Motor manufacturing plants	German Auto giant, Schaeffler invested ~ INR 360 Cr in an ICE and EV domestic powertrain manufacturing	UP Government announced INR 700 Cr investment to develop EV hub in Kanpur	Uno Mindo announced INR 423 Cr investment into green-field powertrain manufacturing plant (including E-axles)
---------------------------	---	---	---	--	---	---


However, import reliance for critical sub-components and raw materials could hinder localisation

Critical dependencies	CAM, AAM precursor materials	Semiconductor chips for integrated circuits	REO ¹ magnets, specialized steel	Semiconductors for inverters, DC convertors, testing infrastructure	Testing infrastructure and semiconductors
-----------------------	------------------------------	---	---	---	---

(1) Rare Earth Oxide; (2) localisation could vary between vehicle segments, for our analysis we have considered overall localisation across segments; Sources: EV Reporter, [Xbattery secures USD 2.3 Mn in Seed funding](#), 2025; EV Reporter, [Ashok Leyland invests in battery manufacturing](#), 2025; Invest UP, [DENSO to invest INR 250 Cr in EV component plant](#), 2025; Nikkei Asia, [Japan's Nidec to build USD 66 Mn Auto-parts plant](#), 2024; EV Story, [Schaeffler says invested INR 1,700 Cr in powertrain, e-mobility and other segments over last 3 years](#), 2025; ET Auto, [UP Govt to invest INR 700 Cr in EV manufacturing in Kanpur](#), 2025; India Today, [Uno Mindo to setup plant for EV powertrain components worth INR 423 Cr](#), 2025

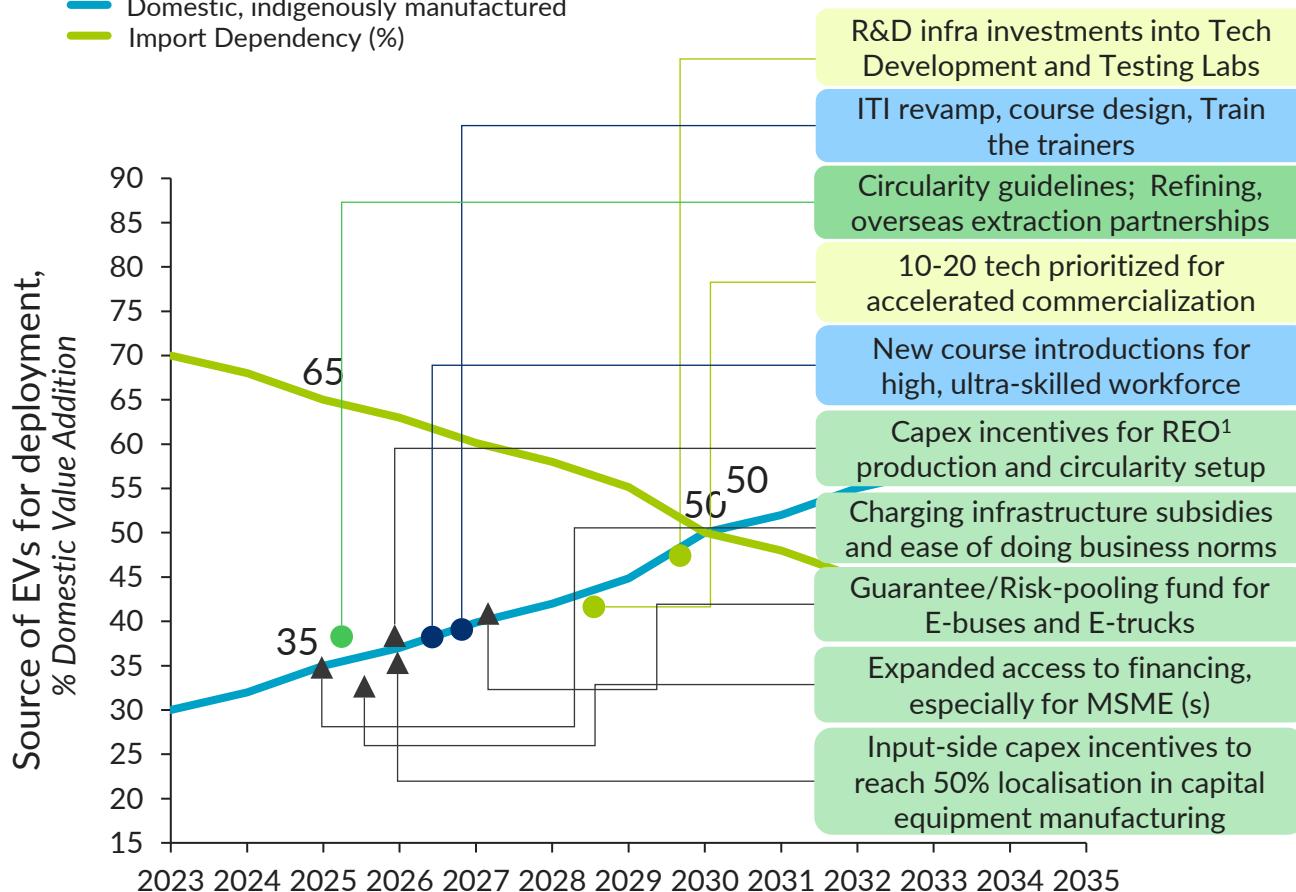

Continued import dependency can lead to USD 9.8-18 billion dollars in import bill in 2030 across the EV value chain (excluding batteries), and dependency for batteries can result in a USD 27-42 Bn import bill

India's expected annual import bill for EVs, USD Bn, 2025-2030¹

Heavy import reliance across the EV sector (spanning multiple components), could result in **USD 9.8-18 Bn lost in imports** across the EV value chain (excluding batteries) in 2030

India's import dependence for battery requirement in mobility, GWh²

Import dependence for batteries expected to rise as EV penetration rises, resulting in import bills as high as **USD 27-42 Bn**, for **batteries alone** in 2030, Further detailed in **Batteries Indigenisation Pathways**


(1) Import bill has been calculated by considering expected annual vehicle registrations, assuming 65% import reliance till 2030. Cost of imports has been calculated by considering the current EV Market value and adjusting for inflation and margins. Current EV Market value has been considered in the range of USD 6-8 Bn based on secondary research and value of total vehicles into average price; (2) Battery demand estimations assume achievement of 30@30 target with 30% EV penetration by 2030. Refer to Battery Indigenisation Pathways for details; Source: GOI Ministry of Commerce and Industry, [Tradestat Data Bank](#), Accessed in October 2025; Spherical Insights, [Top 15 EV Companies in India](#), 2025; DataMint Intelligence, [India EV Market Growth Forecast](#), 2025

Interventions focused on improving DVA across EV manufacturing (specifically on Batteries, BMS, Motors and Power electronics), could help reduce India's import reliance from 65-70% to 50% by 2030

ILLUSTRATIVE

EV Indigenisation Pathway to increase domestic manufacturing

● R&D & innovation ● Workforce & skilling ■ Minerals & raw materials ▲ Financing
— Domestic, indigenously manufactured
— Import Dependency (%)

Key interventions across EV value chain:

- Scaling penetration across **Vehicle Segments** by scaling **charging infrastructure** and deploying focused programs for **E-bus** and **E-trucks**
- Driving **indigenous R&D** across EV components by supporting **INR 4.5K-6.9K Cr** investments across **infrastructure** and **grants**
- Securing access to **Rare Earth Oxides (REOs)** by supporting **INR 4.6K-5.5K Cr** capex investment across **REO production** and **magnet circularity**
- Developing **Ultra-High** and **High Skilled workforce** via investment in **training programs**, **specialized courses**, etc.
- Supporting EV **manufacturing capacity expansion** by driving **INR 31.1K-37.3K Cr** capex investments across **component** and **equipment manufacturing** capacities

Targeted investments across enablers like demand and boosting R&D can help drive further localisation within the EV ecosystem (1/2)

Demand & Market Architecture

- INR 4,000 Cr incremental investment to enable CPOs to build and operate cumulative **8.7 lakh charging points**
- INR 4,900-5,500 Cr investment to support adoption of additional ~ **65,000 E-Buses** and ~ **27,000 E-Trucks** by 2030
- INR **31,700 Cr¹** has already been allocated under PM E-DRIVE and PM E-bus Sewa to drive EV adoption across vehicle segments

Overall **Government** fiscal investment required:

INR 40,600-41,200 Cr

R&D & Product Innovation

- **50-50 co-financing** from government and private sector to scale EV R&D ecosystem
- Support building **4-6 technology Development Labs²** and **2 Testing Labs** for R&D on **10-20 indigenous battery technologies**
- **Efforts led by a Core Working Group³** with industry-academia-government representation

Overall **Government** investment (50% of total investment required):

INR 2,250-3,450 Cr⁴

Upstream Raw Materials & Critical Inputs

- Provide **INR 120-260 Cr capex subsidies** to support development of light and heavy REO⁵ production capacity
- Offer **INR 780-840 Cr** in capex subsidies to support development of Rare Earth Magnet recycling facilities
- Mandate **stockpiling** of Rare Earth Oxides equivalent to **25% of annual demand for 2030**

Overall **Government** investment :
INR 900-1,100 Cr

Detailed in Annex: [Demand Acceleration](#); [R&D Ecosystem](#); [Upstream Raw Materials](#)

(1) Refers to available, undisbursed funds from announced budgets under PM E-DRIVE, PM E-Bus Sewa and PM E-Bus Sewa Payment Security Mechanism schemes; (2) Upgrading current/ building new labs; (3) Potentially set up by MNRE/ANRF; (4) Includes 50% of total INR 2.5-4.5K Cr infrastructure investment and INR 1-1.2K Cr in government grants to be matched by private sector (5) Rare Earth Oxides;

Targeted investments across enablers like demand and boosting R&D can help drive further localisation within the EV ecosystem (2/2)

Capital Equipment & Infrastructure

- Support existing capital equipment manufacturers to indigenise **building up to 50% equipment** for Power electronics, Motors and BMS manufacturing domestically
- Draw from synergies across **EV components** and other **electronics sectors** and support development of **PCB Assembly** capacity to further localise **Charging Infrastructure** manufacturing

Overall capex investment required for domestic machinery manufacturing:

INR 9,000-16,000 Cr

Talent & Workforce

- Develop "**Train the Trainer**" program, dedicated master's programs, and industry-government funded **on-the-job training** with global exposure to retain ultra-skilled talent
- Start certificate, specialization courses**, industry co-delivered modules, internships for high skilled
- Develop **standardized courses**, demo labs and allocate **upgradation budget for 1,000 ITIs** to train low-skill workforce

Overall **Government** investment :

INR 3,000-5,000 Cr

Financing & Taxation

- Driving additional investment in **EV manufacturing** via capex subsidies worth **~INR 4,600-8,700 Cr** with special focus on MSMEs,
- Interest support worth **~ INR 5,800 - 9,000 Cr** on capex finance costs
- Additional capex subsidies** of **INR 2,000-3,600 Cr** can catalyze capital equipment manufacturing capacity
- INR 3,400-12,000 Cr** available from budget allocated under Auto PLI

Overall **Government** fiscal incentives required:

~INR 24,600 Cr

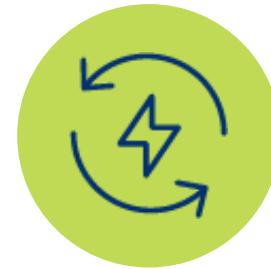
These investments into the EV manufacturing value chain could help capture several opportunities till 2030

~ INR 150,000 Cr

Annual market potential across Batteries, BMS, Power electronics and Motors by 2030

USD 6.4-10.6 Bn

Cumulative import bill savings from 2025-30¹


~6 lakh jobs

Across EV manufacturing value chain by 2030

INR 20,000-24,000 Cr

Annual export potential across Power electronics, BMS and Motors by 2030

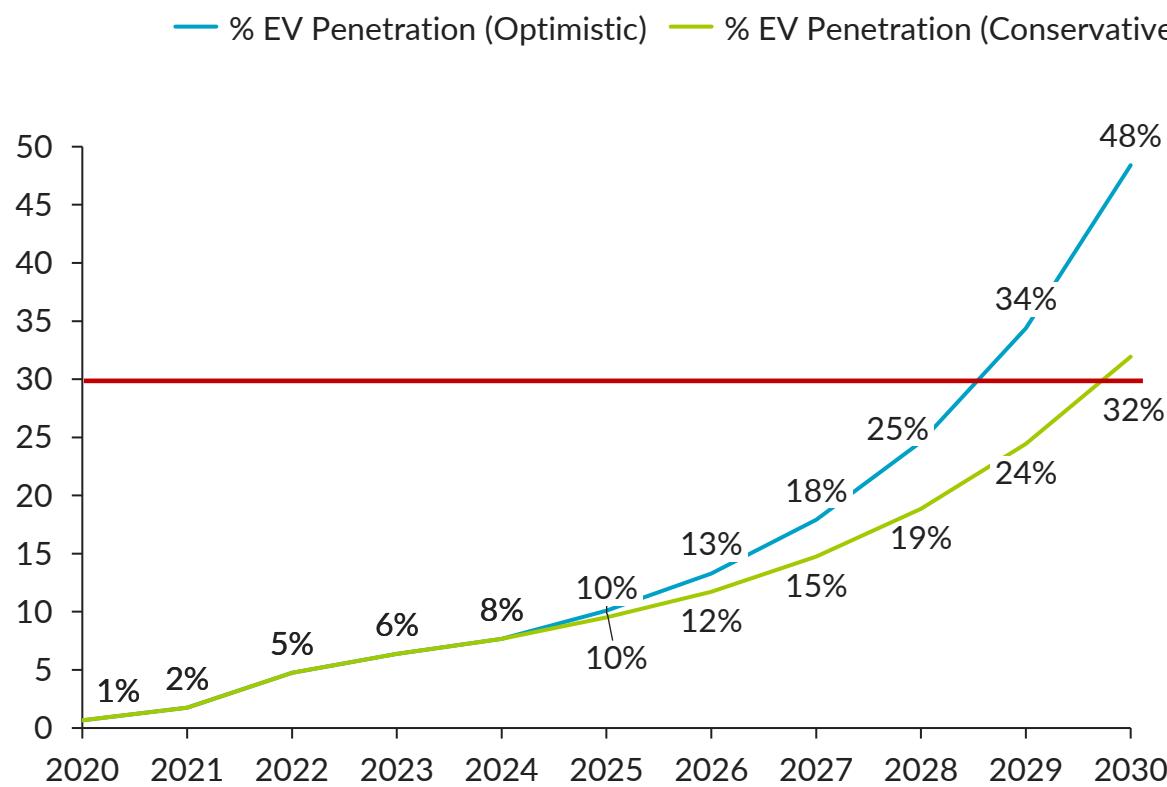
INR 165,600-230,000 Cr

Capex financing gap closure for EV manufacturing² by 2030

Detailed in Annex: [Potential Jobs](#); [Export Potential](#); [Capex Financing – Component](#), [Capex Financing – Capital Equipment](#)

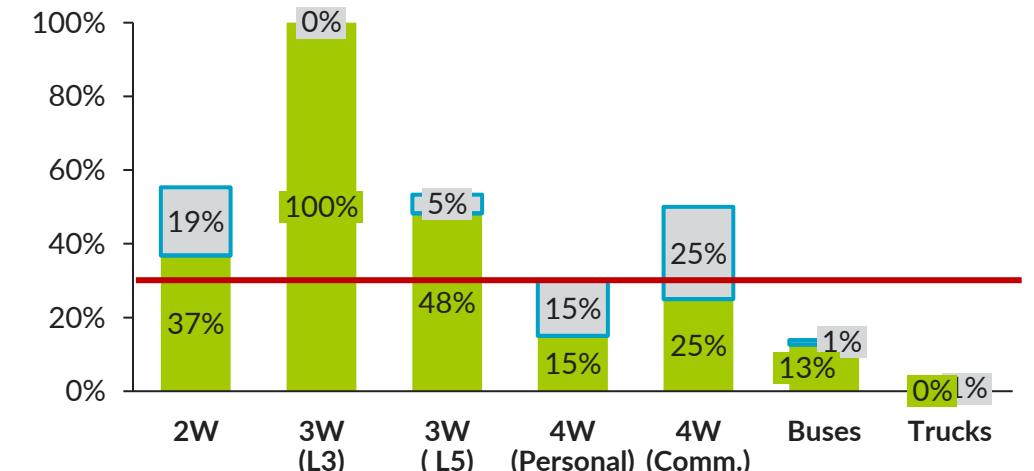
(1) Import bill savings by reducing import reliance from ~65% to 50% across the EV value chain. Import Bill savings exclude savings from battery localisation; (2) Includes capex financing for EV component, charging infrastructure, capital equipment manufacturing, vehicle assembly, interest costs and other capex investments; Source: Dalberg analysis; CPI, [Roadmap for an Automotive Technology Upgradation Financing Facility](#), 2025

SECTION TWO, SUB-SECTION A


E-MOBILITY INDIENISATION PATHWAYS FOR INDIA: DETAILED BY CROSS-CUTTING THEMES

Demand | India is on track to exceed its 30% EV sales penetration target by 2030, but penetration in 4Ws, bus and trucks segments is expected to remain limited

Driven by policy momentum and TCO¹ parity in 2W and 3W segments, India is poised to meet 30% EV sales penetration targets by 2030


Annual sales penetration of EV, %, 2020 – 2030

However, 4Ws, Buses and Trucks expected to see slowest adoption and therefore lower penetration by 2030

Segment wise EV Penetration by 2030, %

Additional Optimistic (Blue Box) | Conservative (Green Box) | 30% EV Penetration (Red Line)

Total Cost of Ownership by Segment, INR/km

	Segment with TCO for EV > ICE						
EV	0.7-2	2.94	1.87	19	4.5	33	9-73
Non-EV	2.5-3.3	4.25	3.6-4.5	12-15	6.3-7.2	40	7-48

Detailed in [Annex](#)

Demand | Targeted interventions needed to scale EV penetration beyond 2W and 3W segments – next push to come from developing charging infrastructure, enabling product innovation & financing

Pathway	Investment Required	Target outcomes	KEY ENABLERS
A Supporting product innovation in E-trucks & financing interventions in E-buses	INR 4,900-5,500 Cr ²	<ul style="list-style-type: none"> ~65,000 E-Buses & ~27,000 E-Trucks to be added by 2030 	<ul style="list-style-type: none"> Enabling tech transfer in MHDT⁶ segment and launching innovation challenges for OEMs for new products Outlining an additional ~INR 3,000 Cr as guarantee pool fund under the existing PM E-Bus Sewa PSM Scheme to support adding ~32k more buses
B Offering Viability Gap Funding to offset price increase in E4Ws due to improved localisation	INR 4,500-6,500 Cr <i>Capped at 4W OEMs; already included in Battery Indigenisation Pathways, not proposed as additional investment within this document</i>	<ul style="list-style-type: none"> Potential to add ~5.1 Mn E4Ws till 2030 	<ul style="list-style-type: none"> Extending existing subsidies (e.g., FAME II), spread over the next 4 years and linked at various stages of the EV production to offset the 15-25% price increase in E4W segment Addressing the key challenges with the design and execution of subsidy disbursement to improve the effectiveness of policy
C Enabling CPOs ¹ to expand charging infrastructure by improving business viability of setting up and operating charging stations	INR 4,000 Cr ³	<ul style="list-style-type: none"> Supporting establishment of ~7.5 Lakh additional charging points by 2030, with focus on top 5 Metro cities⁴ (by EV adoption) in India, and top 20 high volume freight corridors 	<ul style="list-style-type: none"> Subsidizing EVSEs and upstream charging infrastructure for depot CPOs Building a one window system for CPOs for the entire end-to-end process of setting up a charging station A centralized end-consumer app built on the existing capabilities of BEE and e-AMRIT with features such as locations of charging stations, waiting time, etc.

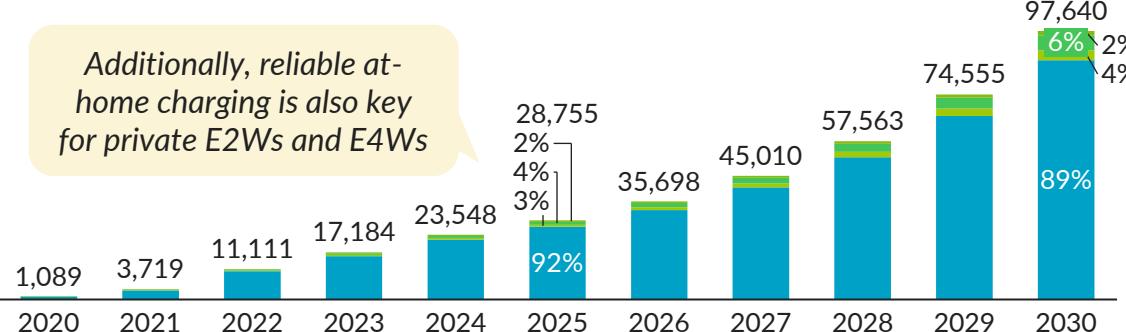
Additionally, ~INR 31,700 Cr available undisbursed funds under PM E-DRIVE and PM E-bus Sewa and INR 4,800-5000 Cr private sector investment will be required to support higher adoption of E-trucks and E-buses, and accelerate charging infrastructure development

Demand | An investment of INR 4,900-5,500 Cr across product and financing levers is needed to boost E-Bus and E-Truck penetration which is currently at just ~3% and 0.01% in their respective vehicle stocks

Both E-Bus and E-Truck segments currently witness less than 5% EV penetration but face different challenges; improving penetration for E-Buses requires focus on providing financing support whereas E-Trucks need a product centric approach

				Critical Solution
E-Bus		E-Truck		
	Challenge	Solution	Challenge	Solution
Product	Heavy battery packs and lack of model diversity reduce passenger capacity, range , and adaptability for varied routes	Support OEM-Tier-1 partnerships and pilot grants to develop missing variants (mini/midi, hill-city, high-heat battery-thermal packages)	High battery weight cut payload capacity by 15-20% , restricting route economics	Establish a HDETs³ Technology Access Window to co-finance OEM licensing and validation for Indian duty cycles; launch product innovation challenges
Financing	1.3-2.5X higher upfront costs , delayed GCC ¹ payments, and mismatched loan tenures constrain cash flows and private lending	Allocate additional INR 2,900-3,000 Cr as a guarantee/risk-pool fund to back 32K additional buses under the existing PM E-Bus Sewa PSM scheme ²	2-3X higher upfront costs, limited financier trust due lack of proven business models, resulting in finance costs higher by ~7 percentage points	
Charging	Slow charging and waiting time increases downtime effectively requiring 1.2 E-buses to replace 1 Diesel/CNG bus	Plan depots with a 1:3 charger-to-bus ratio and provision HT grid capacity upfront; pilot wireless charging pads at bus stops to cut downtime	Limited availability of dedicated fast and ultra-fast charging points along highways could result in low economic feasibility; high charging costs (INR 18-23/kWh)	Target ~2GW truck charging by 2030 in 5 key states , anchoring rollout with MoP's 12 e-Highway corridors
Operations	Range limits, low charger-to-bus ratio, and limited technician capacity reduce fleet reliability	Mandate telematics , predictive maintenance, and charger-queue management in GCC KPIs with standardized training for drivers and technicians	Higher operational costs driven by greater downtime (for charging), limited driver/technician skills	Mandate shipper-fleet-CPO tripartite MOUs for guaranteed volumes; promote algorithmic routes and charge scheduling to maximize payload-time economics

(1) Gross Cost Contract Models; (2) Refer to additional interventions on top of the existing initiatives and incentives under the PM E-bus Sewa Scheme; (3) Heavy-Duty E-truck


Demand | Strengthening the business case for CPOs, alongside an additional investment of INR 4,000 Cr, will be critical to achieve 8.7 lakh charging points by 2030 to meet the energy needs of India's growing EV stock

India needs 8.7 Lakh charging points across Public and Depot charging points, by 2030 to support growing EV registrations

Annual incremental charging infrastructure requirement (Added on YoY basis)

■ CCS II (120 kW) ■ CCS II (60 kW) ■ Type II AC (22 kW) ■ Type II AC (7.4 kW)

Public Charging Points (Added on YoY basis)

Depot Charging Points (Added on YoY basis)

Targeted interventions and ~INR 4K Cr investment required to overcome existing challenges, and scale charging infrastructure

Key interventions to scale charging infrastructure¹

Support Business Economics for CPOs

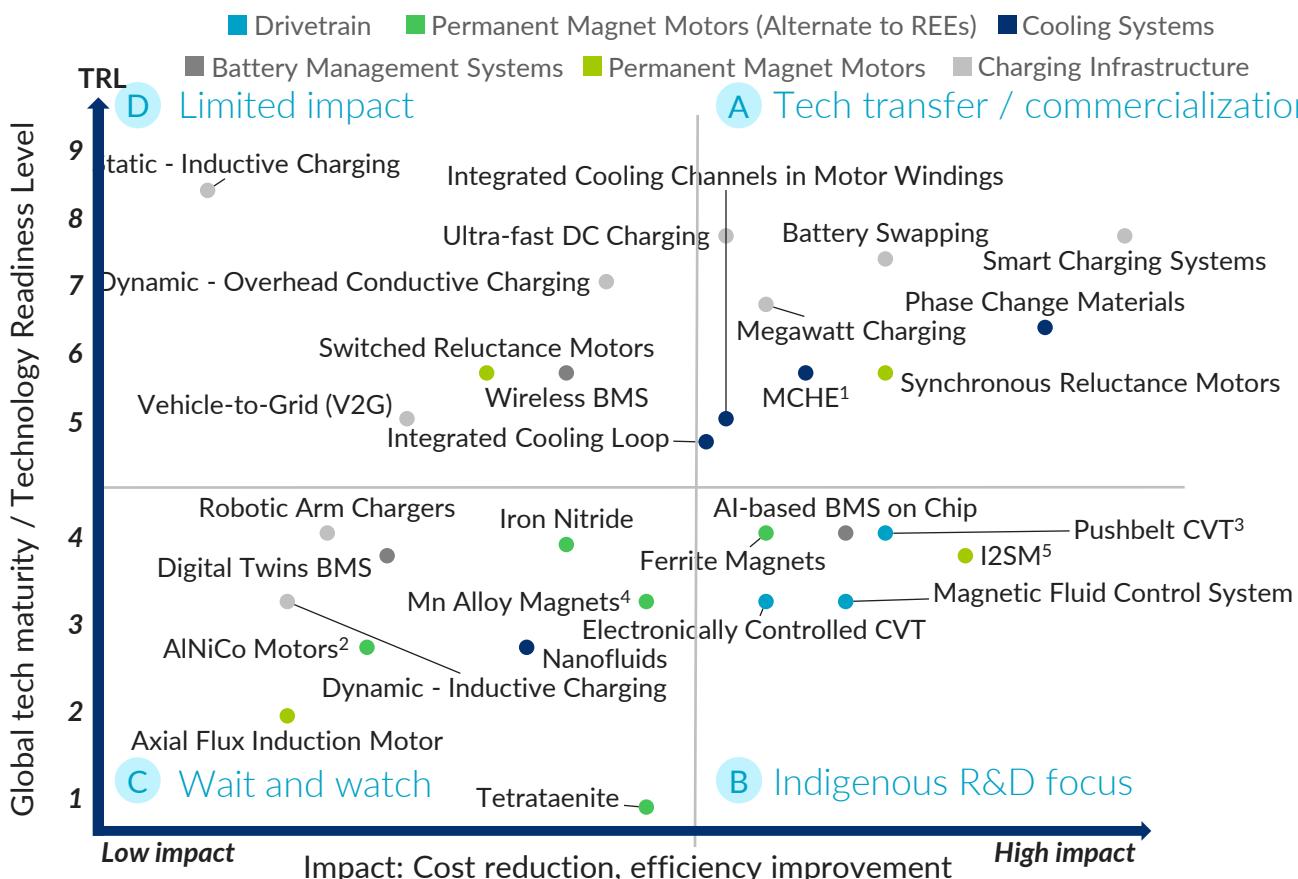
Subsidizing EVSEs and upstream charging infrastructure for depot CPOs in addition to the subsidies provided under PM E-DRIVE

Improve “Ease of Doing Business” for CPOs

Building onto the existing one window portal by certain DISCOMs to expand its scope to entire end-to-end process of setting up a charging station and also availing the relevant subsidies for CPOs

Facilitate Grid Load Management

An consumer app built on the existing capabilities of BEE and e-AMRIT to balance utilisation of different charging stations to manage grid load


INR 4,000 Cr additional investment² required to set up adequate charging infrastructure

(1) These are additional interventions on top of the existing initiatives such as capped electricity tariffs, reduced GST on EVSEs, ToD pricing to manage demand, etc.; (2) Meeting the 2030 target of 8.7 lakh charging points, requires support for 7.5 Lakh additional charging points beyond currently installed 29,000 stations (equivalent to ~1.2 Lakh charging points). Under PM E-DRIVE, INR 2,000 Cr has been allocated for 72,000 charging stations (equivalent to ~2.5 Lakh charging points). Thus incremental 5 Lakh charging points are needed to meet the 2030 target (~2X the current subsidy coverage), necessitating ~ INR 4,000 Cr in extra investment.

Detailed in Annex

The R&D ecosystem would require industry and academia participation and shared investment of INR 4,500-6,900 Cr on infrastructure investment, grants and capital access to fuel indigenous R&D and innovation for prioritized EV technologies

Focus R&D and innovation technologies in E-mobility:

Key insights on R&D ecosystem development

- MHI/MoP and ANRF could set up a Core Working Group** with industry-academia-government representation **to lead efforts on** infrastructure set up, grants, private participation⁶
- Industry participation crucial** to identify the right priority 10-20 innovations where industry could support commercialisation
- INR 5,000-7,700 Cr** total EV R&D investment required
 - R&D infrastructure:** INR 2,800-5,000 Cr (EV tech development: INR 1,700-2,800 Cr; EV tech testing: INR 1,100-2,200 Cr)
 - Project grants:** INR 2,200-2,700 Cr
 - INR 2,250-3,450 Cr** government investment required
- Distinct, open-access R&D labs to be set up under PPP structure** across public and private sector⁷ focusing on **select, high-quality labs** maximising resource efficiency and public-private collaboration

Detailed in Annex: [Steps](#); [Infrastructure](#); [Funding](#)

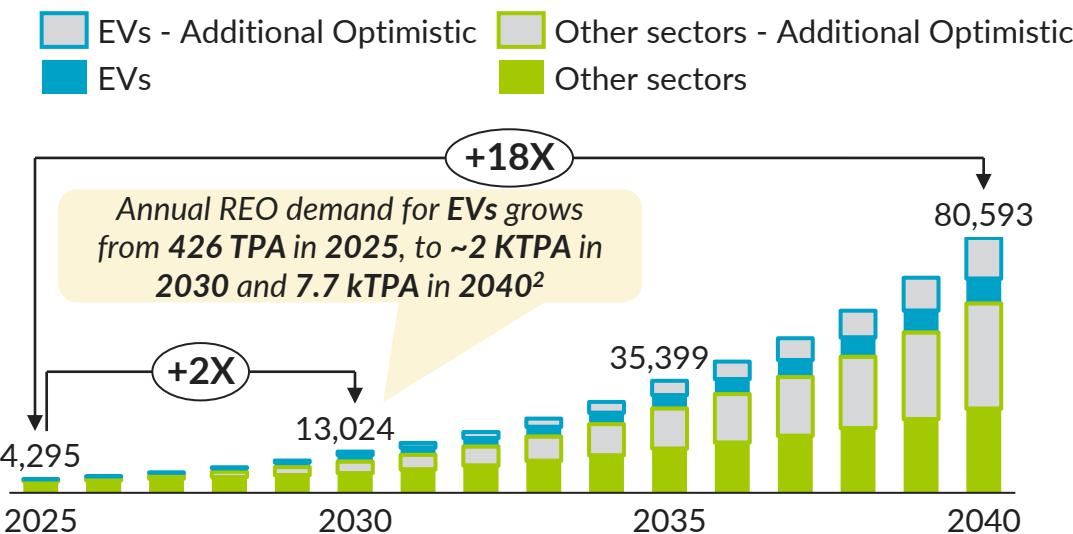
(1) MCHE: Microchannel Heat Exchanger; (2) AI²NiCo: Aluminium-Nickel-Cobalt; (3) CVT: Continuously Variable Transmission; (4) Mn: Manganese; (5) I2SM: In Rotor Inductively Excited Synchronous Motors; (6) For tech identification and funding; (7) Upgrading existing/ building new; Source: Academia and industry experts; US Small Business Administration, [Annual Report](#), 2022

		DEVELOPMENT LABS	TESTING LABS
	Number of labs	4-6 development labs 3-4 COEs (motors, power electronics, systems integration and 1-2 innovation centers)	2 new testing labs Upgrades to 1-2 current labs (e.g., ICAT labs to test innovation and compliance perspective); set up of 1-2 new labs for Pilot scale testing
	Cost of labs	INR 1,700-2,800 Cr	INR 1,100-2,200 Cr Investment across innovation, compliance and pilot testing labs
	Prospective existing infrastructure for upgrade	 IIT Delhi: Centre for Automotive Research and Tribology IIT Madras: Centre of Excellence in Advanced Automotive Research	Central testing facility DHI Centre of Excellence for E-Mobility DHI CoE for E-mobility under Automotive Research Association of India
	Machinery needs	High precision equipment suited for R&D which is customizable and agnostic across different EV and battery segments <ul style="list-style-type: none"> Material R&D and chemical wet-lab equipment Rotor magnet insertion equipment, SMT¹ lines Battery cell simulators, current and voltage measuring tools 	
	Manpower and support needs	<ul style="list-style-type: none"> Trained manpower with ability to use advanced equipment (separate upskilling for current researchers) Independent management team reporting to own Board vs. public/ private sector researchers to ensure maximum utilization, efficient operations Market needs assessment of upcoming tech trends to inform relevant research 	

(1) Surface Mount Technology used to assemble Printed Circuit Boards used in Battery Management Systems and Power electronics
 Source: Academia and industry experts

Upstream: Raw Materials | India could meet at least 50% rare earth oxide demand domestically by 2030 with INR 750-1,500 Cr cumulative investment in domestic refining, supported by investments in circularity and stockpiling

Rare Earth Oxides are critical minerals for various sectors of strategic importance, but are subject to heavy import reliance on China:


- Rare Earth Oxides (REO) are key **raw materials** across **EV motors**, **Wind Turbine generators** and **defense applications**, amongst others
- **Domestic demand** for REOs, for the **EV sector**, currently stands at **400-450 TPA**; this is expected to grow ~5X to **2-3 KTPA** by **2030**
- China holds **~60-90% of global REO value chain**, while India faces **~90% import reliance** for the minerals (across domestic demand for standalone (REO) and finished good forms (magnets))
- While India has some domestic Oxide production capacity under IREL, **capacity expansion** is critical to meet expected **2X** growth in demand by 2030 and **18X** by 2040 (optimistic scenario)

Key pathways for increased self-reliance include stockpiling efforts and investments in domestic refining and circularity capacities:

	A Domestic mineral refining	B Scaling Circularity	C Import diversification and stockpiling
Details	Global and domestic mineral extraction with domestic refining	Closed loop recycling for Rare Earth Oxide recovery from end-of-life magnets	Stockpiling up to 25% of annual demand for Rare Earth Oxides
Cumulative Investment by 2030	INR 750-1,500 Cr incremental capex for additional 3-5 kTPA Rare Earth Oxide production capacity, INR 120-260 Cr government support	INR 4,400-4,700 Cr upfront capex for 6.5-7 kTPA magnet recycling capacity and government support worth INR 780-840 Cr	INR 5-10 Cr upfront capex for developing rare earth storage facilities

Detailed ahead

India's annual Rare Earth Oxide demand, 2025-2040, TPA

(1) Includes cumulative electricity and upfront capex subsidy, interest subvention and import duty waiver till 2030, only for 2040 Graphite refining capacity targets (detailed ahead)

(2) Refers to conservative scenario demand estimates; Sources: IEA, [Global Critical Minerals Outlook](#), 2025; CFR, [China in Africa: March 2025](#), 2025; USGS, [Mineral Commodity Summaries](#), 2025; Dalberg Analysis

Further detailed in [Annex](#)

Upstream - Domestic Refining | INR 120-260 Cr capex subsidies till 2030 could support development of incremental 2,000-4,250 TPA domestic capacity for Light and 470-700 TPA for Heavy Rare Earth Oxides

Existing and announced domestic REO production capacity is not cost competitive and not sufficient to meet 50% demand locally

- **Domestically produced Rare Earth Oxides** (if dependant entirely on imported feedstock – Rare Earth Concentrates) are up to **35% more costly** than **imported** Rare Earth Oxides (landed cost)
- Despite Oxide capacity announcements (by **IREL** and **GMDC**), India is slated to meet only **26-47% of annual Rare Earth Oxide demand**, domestically

Development of requisite incremental REO capacity is impeded by key challenges

- **Limited domestic Rare Earth exploration and extraction:** India has the 3rd largest stock of Rare Earth Reserves globally but needs substantial exploration efforts to develop active mines; domestic deposits limited to Light REOs
- **Regulatory challenges in gaining private sector support:** Existing regulatory hurdles and unattractive operational norms (e.g., revenue sharing), disincentivize private sector participation
- **Low downstream demand from magnet manufacturing:** Magnets are a critical downstream product for REOs, but domestic magnet manufacturing is at nascent stage

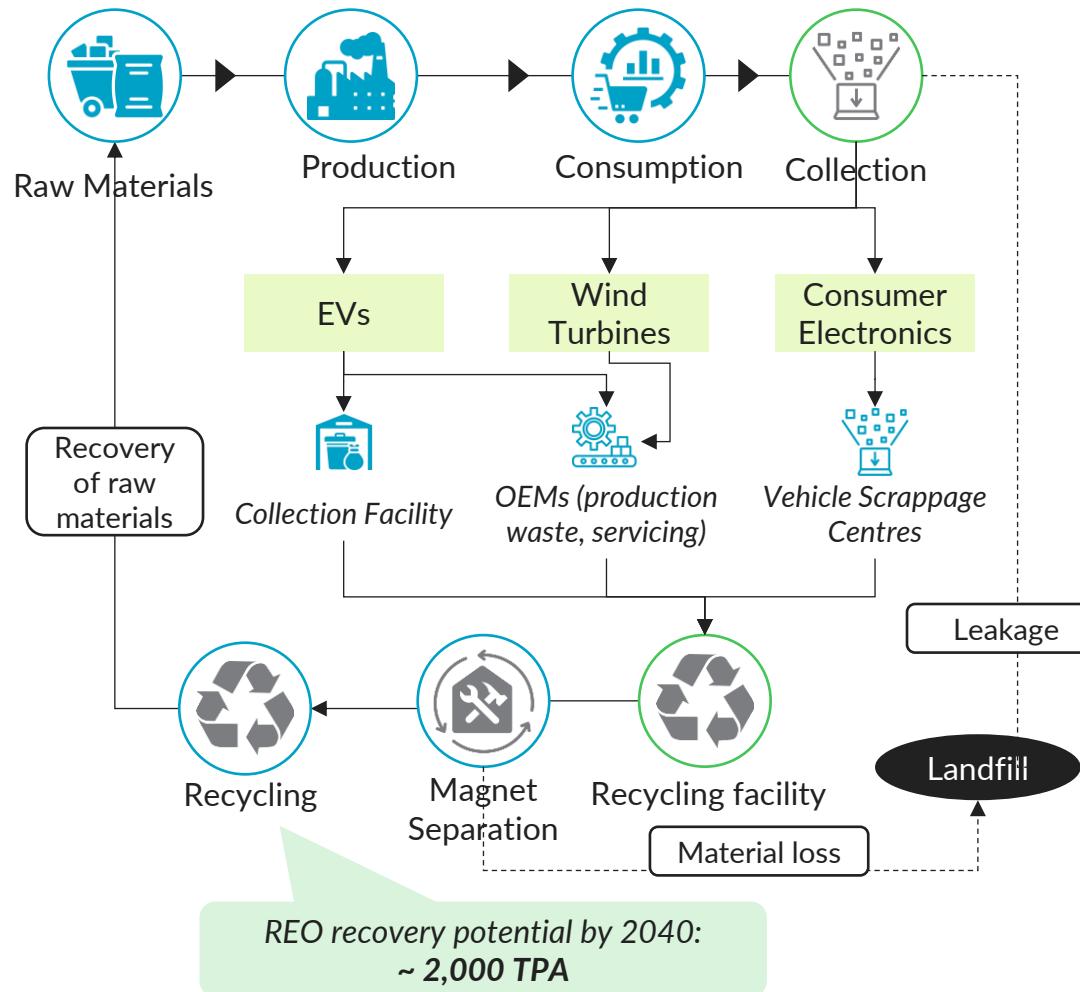
Interventions across mineral exploration and extraction, oxide production and downstream demand could help boost localised REO production

Expanding Exploration and Extraction

- Expedite exploration and composite license **auctions** for domestic **REE blocks**
- Secure access to **Heavy Rare Earth Ores** by exploring **G2G partnerships** with Myanmar, Australia, etc.

Scaling Mineral to Oxide Capacity

- Secure **low-cost Rare Earth Concentrate** and facilitate **tech transfer** to support **Heavy REO capacity** (Light REO: Australia, Brazil; Heavy REO: Australia, Myanmar)
- Support initial **capacity development** for **Heavy** and incremental **for Light REOs** through capex subsidies


Total Capex: INR 750-1500 Cr
Capex subsidies¹: INR 120-260 Cr

Securing Downstream Demand

- Identify sources for **low-cost raw materials** to support **cost competitiveness** and promote offtake
- Offer idle PSU land sites to magnet manufacturers at subsidized rates

Upstream - Circularity | Capex investments in developing magnet recycling facilities could enable recovery of ~2 kTPA REOs from end of life permanent magnets used across EVs, Consumer Electronics and Wind turbines

Circularity for permanent magnets draws from 3 key sources of waste - EVs, Consumer Electronics and Wind Turbines

Key interventions and enablers across collection and recycling required by 2030 to enable REO recovery from used Magnets:

XX - Projected annual potential by 2040

Collection

7,384 TPA waste collected

- Cumulative **INR 14,200-16,500 Cr capex investment¹** by 2030 to support development of **160-180 battery waste collection centers and additional ~350-600 Vehicle Scappage Centers**, enabling high magnet waste collection rates from consumer electronics and EVs

Recycling

6,988 TPA waste recycled

- Boost economic feasibility for recyclers:** Price guarantee measures, 2-year GST deferrals on feedstock, and access to imported magnet scrap from regions with higher EV scrap availability (EU/US)
- Scale magnet recycling capacity:** Support **INR 3,900-4,200 Cr** investment in REO recovery capacity development via **INR 780-840 Cr capex subsidies**
- Targeted policy support:** Exception approvals for recycling startups meeting threshold requirements, easing Red Category restrictions²

Total Capex: **INR 4,400-4,700 Cr**
Capex subsidies³: **INR 780-840 Cr**

(1) Covered in the investments proposed under the Battery Indigenisation Pathways; (2) As detailed in Battery Indigenisation Pathways; (3) Capex subsidies to be disbursed at 20% of capex investments; Source: Dalberg Analysis, expert consultations

Capital equipment & infrastructure | Power electronics, Motors, BMS and Batteries are key components to prioritize localisation efforts and achieve 50% DVA¹ but face significant import reliance for key capital equipment

COMPONENT	POTENTIAL SYNERGIES	KEY UNLOCK ⁷	However, there's significant import reliance for capital equipment
Power Electronics	<p><i>Sub component manufacturing and PCB Assembly</i></p> <ul style="list-style-type: none"> Ongoing policy momentum (ECME²) and, synergies with other sectors (consumer and industrial electronics) 	PCB Assembly	 ~70-80% import reliance for SMT ⁸ machines used in PCB Assembly
Motors	<p><i>Stator and component manufacturing, motor assembly</i></p> <ul style="list-style-type: none"> Existing non-permanent magnet, motor manufacturing capacities for stator, rotor and magnet housing 	Motor Assembly, using specialized winding techniques (e.g., Hairpin Winding)	 ~60% import reliance for Rotor Magnet Insertion and Balancing machines used in Motor Assembly
Battery Management Systems (BMS)	<p><i>Software development and PCB Assembly</i></p> <ul style="list-style-type: none"> Existing policy support on PCB assembly and domestic capacity for software development – India formed ~20% overall APAC software market³ in 2024 	Software development and PCB Assembly	 ~70-80% import reliance for machines used across Cell formation and assembly
Battery Pack	<p>PARALLEL FOCUS</p> <p><i>Pack assembly, sub-component level manufacturing for insulation, casings, etc.</i></p> <ul style="list-style-type: none"> Ongoing policy efforts running parallelly – ACC⁴ PLI and PM e-Drive schemes 	Electrode manufacturing, cell formation and assembly ⁵	
Charging Infrastructure	<p><i>PCB Assembly for Electric Vehicle Supply Equipment (EVSEs)</i></p> <ul style="list-style-type: none"> Existing policy focus (PMP⁶ for PM e-Drive and FAME II Schemes) driving 60-70% localisation in some cases PCB Assembly aligns with other sectors and EV components 	PCB Assembly	

(1) 50% DVA across the EV value chain; (2) Electronics Component Manufacturing Scheme; (3) APAC software market exclusive of Japan and China; (4) Advanced Chemistry Cell; (5) Detailed in the Battery Indigenisation Pathways; (6) Phased Manufacturing Programme; (7) Refer to [slides in Annex](#) for components de-prioritized in the short term; (8) Surface Mount Technology; Source: IDC, [India Software Market to hit USD 18.4 Bn](#), 2025

Capital equipment & infrastructure | INR 9-16K Cr investment in building domestic capacity for key machines used across these components can reduce import reliance and support achieving 50% DVA across EV value chain

Pathways to source key capital machinery for domestic EV component and charging infrastructure production:

Pathway criteria

Pathway unlocks

% Expected Capex contribution

1

Domestic manufacturing for select EV equipment with existing industry synergies

Equipment for **sophisticated electronics**, e.g., **SMT¹ equipment** for PCB² assembly used in **BMS, Power electronics, EVSEs³, consumer electronics, defence**, etc.

Fewer improvements needed for existing technology, e.g., **Rotor Magnet Insertion machines**, currently used for magnet insertion into **BLDC⁴ motors**

Leverage synergies with other sectors:

- **SMT machines with Display-Module Assembly**, incentivized under Scheme for Electronic Components Manufacturing
- **Rotor balancing machines** with medical, aerospace, defence and electronics sectors (MRI machines, fans, transformers, etc.)
- **45-50% Capex required** across component manufacturing can be indigenised (across **PCB** and **Motors assembly**)
- e.g., **Rotor Magnet Insertion** and **SMT Solder Paste Printing Machines**

2

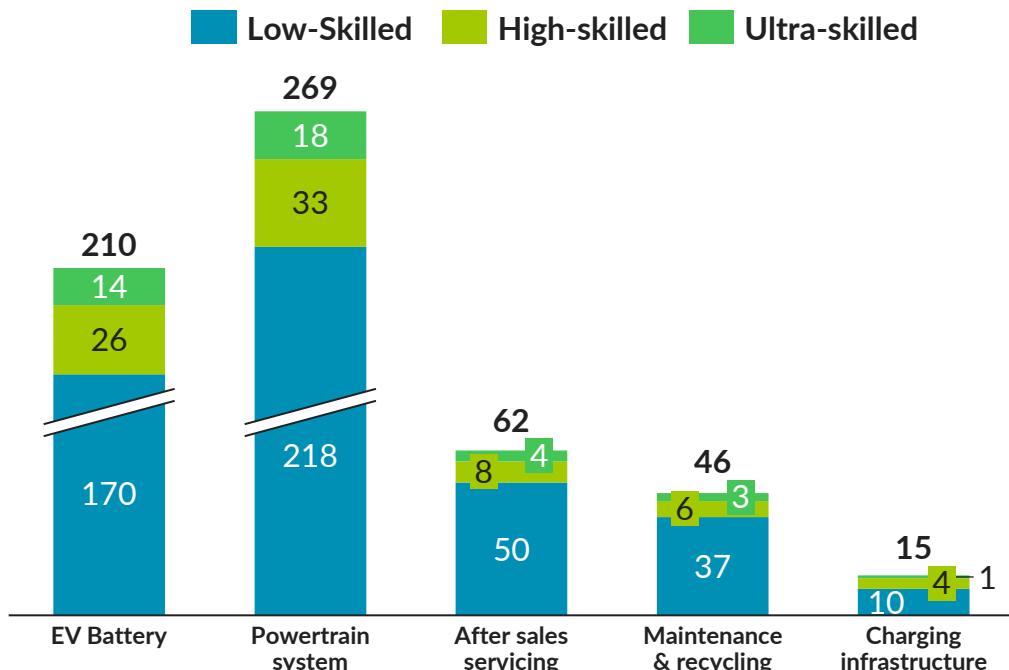
Import highly specialized, advanced EV capital equipment with no industry synergy

No synergies in **specialized EV-centric equipment**, e.g., precision machining for thermal management systems

Emerging semiconductor fabrication (e.g., **GaN⁵ Semiconductors**), coil winding tech (Hairpin winding) – led by **Taiwan** and **South Korea**, nascent in India

• Develop **G2G partnerships** to secure continued access to key machines (e.g., **Germany, Taiwan, South Korea** – have existing equipment manufacturing capacity)

• Explore **sourcing models** such as **equipment leasing systems** and **centrally operated pay-per-use facilities** – reducing cost of and improving access to key machines


• **50-55% Capex** across Power electronics, BMS and Motors could remain import reliant

• e.g., **Coil Winding, SMT Pick and Place Machines, SMT, Automated Optical Inspection Machine**

Workforce | India would require ~6 lakh additional ultra, high, and low-skilled workers¹ across EV manufacturing value chain by 2030 with priority to train Ultra and High-Skilled workforce

To build a ready workforce, targeted interventions would be required across four critical levers including trainers, course design, employability, finance; with skilling efforts focusing on strengthening industry linkages and global partnerships

Projected (2030) additional workforce requirement for EV manufacturing value chain, in '000

Total budget²

INR 7,300-12,900 Cr

Total government share

INR 3,000-5,000 Cr

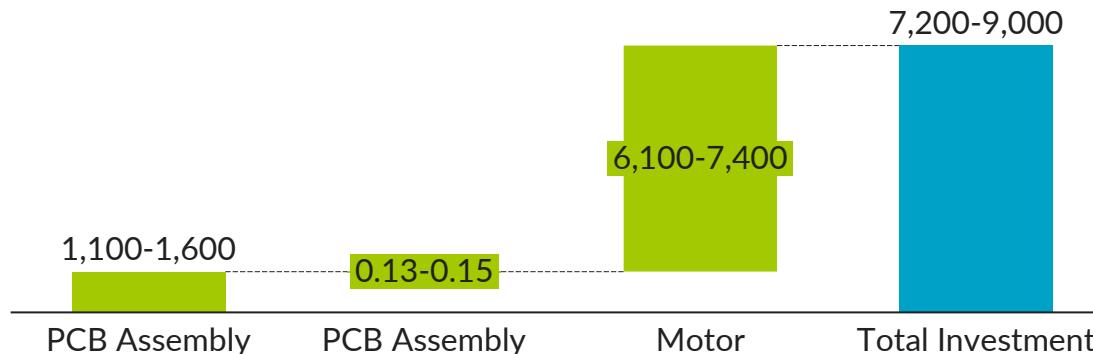
Levers: Trainer Course Design Employability

Focus

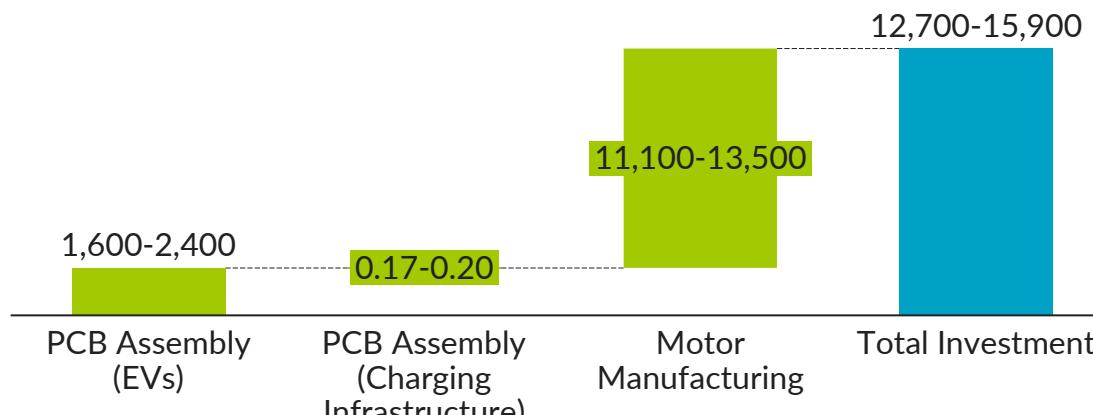
- Develop “Train the Trainer” program for 200 – 300 trainers / academicians / professors from Top 100 engineering colleges¹
- Attract EV experts from Global OEMs (EU, South Korea, Japan, China) to train faculty at Tier 1 engineering colleges (Top 20)
- Launch master's programs in tier 1 colleges with demo and R&D labs, blending technical skills with policy and regulatory skilling
- Develop industry-government funded on-the-job training initiatives with global exposure to retain R&D talent in India
- Introduce EV component manufacturing certification and specialization courses in Top 100 engineering colleges with demo, R&D labs
- Co-deliver cleantech manufacturing modules, and internships at manufacturing plants for engineering students
- Create standardized courses and qualification packs aligned with industry-defined competencies
- Develop modules for retraining workers from adjacent industries like automobile mechanics (for EV Servicing and assembly) or electronics technicians (for Battery pack or BMS assembly)

Financing | INR 228.6-302.6 K Cr would be required during 2025-30 to achieve 50% indigenisation across the EV value chain, build a cohesive R&D ecosystem and train the required workforce

Government funding of INR 71.4-75.4K Cr would be required across demand acceleration, R&D, workforce skilling and subsidies on electricity, capex and interest by 2030 to achieve these goals


Theme	Total Funding Required (INR Cr)	Government Funding Required (INR Cr)	Key Activities	Potential outcomes
Demand & Market Architecture ¹	45,500-46,200	40,600-41,200	Subsidies for E4Ws, E-buses and E-trucks segment to drive further adoption and improving the business case of charging stations for CPOs	Additional 5 Mn E4Ws, 65,000 E-buses, 27,000 E-trucks and 8.7 lakh charging points by 2030
R&D & Product Innovation	5,000-7,700	2,250-3,450	4-6 R&D development and 2 testing labs for EV Component level R&D; INR 1,000-1,200 funding for project grants	Indigenous development of EV Component technologies; accelerated adoption of early-stage innovative global technologies
Upstream Raw Materials & Critical Inputs	5,200-6,200	900-1,100	Input subsidies on capex for domestic Rare Earth Oxide production capacity; investment in magnet recycling facilities to support circularity	Reduce import dependency on refined Rare Earth Oxides; meet Oxide demand through recycled Permanent magnets
Capital Equipment & Infrastructure	165,600-230,000	~24,600	<p>A Indigenous production of up to 50% equipment for Power electronics, Motors, BMS and EVSEs²;</p> <p>B Capex & interest support across component & charger manufacturing, & vehicle assembly</p> <p>C Structural modifications to Auto PLI³</p>	Reduce import dependence for equipment where feasible; drive accelerated EV capacity expansion Improved manufacturing capacity and efficiency, potentially leading to higher localisation for EVs Enabling greater access to, and utilization of PLI
Talent & Workforce	7,300-12,900	3,000-5,000	Training additional 6 Lakh ultra, high, and low skilled workers across the EV value chain and setting up demo training and R&D facilities	Ensuring a stable supply of workers, reducing attrition and lowering training costs for manufacturers
TOTAL	228,600-302,600	71,400-75,400		Detailed ahead

(1) Includes ~INR 31,700 Cr available undisbursed funds under PM E-DRIVE and PM E-bus Sewa to drive EV adoption across vehicle segments; (2) Investment estimations for this intervention have been covered in the Financing section; (3) Auto and Auto Components PLI


Capex and Infrastructure | Additional Capex subsidies of INR 1,800-2,250 Cr in Conservative and INR 3,175-3,975 Cr in Optimistic scenario can support development of local capital equipment manufacturing

Cumulative investment required to develop capital equipment capacity to support 50% localisation across EV ecosystem, INR Cr¹

Conservative Scenario²

Optimistic Scenario²

Key Insights:

- Scaling capital equipment availability for **PCB Assembly** can **unlock localisation across multiple sectors** – building the **foundation for** backward integration into **PCB manufacturing**
- Some players already claim **60-70% localisation** on **charging infrastructure**, and **PCB Assembly** for **EVSE's** could further improve localisation

Key machines to indigenise³:

- PCB Assembly:** Reflow Oven, Loading and Unloading, Solder Paste Printing and Wave Soldering Machines
- Motor Manufacturing:** Rotor Magnet Insertion and Rotor Balancing Machines

Total investment required:

Conservative Scenario:
INR 8,100-10,100 Cr
Optimistic Scenario:
INR 14,200-17,800 Cr

Subsidy required @ 25%⁴:

Conservative Scenario:
INR 1,800-2,250 Cr
Optimistic Scenario:
INR 3,175-3,975 Cr

(1) Investment limited to capital equipment for EV sector; (2) Scenarios in line with the scenarios used to forecast annual EV registrations – detailed in Demand Acceleration section; (3) Machines with synergies with other industries are considered. Investment for PCB Assembly excludes Pick and Place, and Automated Optical Inspection machines, and Investment for Motor Manufacturing excludes CNC Machines and Coil Winding Machines; (4) Similar subsidies of 25% exist under [Scheme for Promotion of Manufacturing of Electronic Components and Semiconductors \(SPECs\)](#) for power electronics and PCBs. This recommendation aims to ensure these benefits cascade to the EV sector.

Capex and Infrastructure | Financing EV manufacturing ecosystem is expected to require ~INR 156.7-213.8K crore till 2030 across OEMs and auto component manufacturers, partially covering interest costs

INR 124-164K Cr capex investment and INR 12-18K Cr government support required for EV ecosystem by 2030

	Investment required (INR crore)	Subsidy Support ¹ (INR crore)
Component manufacturing		
BMS & other systems	~5.6K	~0.5K
Motors	~9K	~0.8K
Power electronics	~11.2K	~1K
Working capital needs	~18K	-
OEM-led Vehicle assembly	26-63.7K	2.3-5.7K
Charging infrastructure manufacturing²	40.6-52.2K	0.7K
Other ecosystem investments³	3.7-13.6	
TOTAL	124-163.5K	~12.4-18.2K

The expected component manufacturing capex investment is expected to increase to **INR 55K crores** by 2035, of which **INR 14K crores** will be needed for the MSME segment

Additionally, government led concessional finance of **INR 5.8-9 K Cr** can be provided to support EV ecosystem manufacturers cover interest costs of **INR 32.7-50.3K Cr⁴**

MSMEs disproportionately affected by financing challenges and require targeted interventions to meet 50% localisation targets, and maintain their current 25% share in industry's turnover

TRL Band	Recommended instruments & interventions
TRL 1-3 Idea to lab proof	<ul style="list-style-type: none"> Dedicated innovation fund: A pooled pre-seed EV innovation fund blending public R&D grants with private catalytic capital Challenge-based innovation prizes: Prize-based competitions for EV MSME innovations in motor design, battery packaging, and electronics
TRL 4-6 Prototype to pilot in a relevant environment	<ul style="list-style-type: none"> Blended-finance bridge funds: Structures that pair concessional debt or first-loss guarantees with private VC. Extended EvolutionS-type programs: Larger ticket sizes (INR 2-5 Cr vs. INR 50 lakh) through state incubators, tied to performance milestones OEM-backed pilot funds: Co-financing pools where OEMs and Tier-1s share pilot risk with MSMEs Enhance utilization of equity fund from SIDBI: Simplify access and broaden eligibility for MSMEs while building readiness programs for equity investments
TRL 7-9 Pilot plant to commercial scale	<ul style="list-style-type: none"> MSME-tier PLI: Lower eligibility thresholds and milestone-based disbursal Interest subvention funds: Dedicated concessional loan window reducing MSME borrowing costs from ~12-14% down to 7-8% Transition funds with co-investment: Government-backed cornerstone investors catalyzing family offices/DFIs into MSME tech-upgrade funds

(1) Capex subsidies calculated at a 10% rate; (2) Subsidy support for charging infrastructure estimated is above and beyond INR 4,000 Cr specified as a demand intervention, and is required only in optimistic scenario; (3) Available budget under the Auto and Auto Component PLI that is expected to be required in the ecosystem; (4) Interest costs assume 11% interest rate, 70% Debt component and a 7 year loan tenure for capex financing. 20% of these costs are expected to be met via the government led concessional debt

Capex and Infrastructure | Expanding PLI scope and boosting inclusivity are key measures to improve effectiveness of PLI funds in driving ecosystem level development for domestic EV manufacturing

While the Auto PLI¹ scheme has witnessed some success, EV ecosystem faces some challenges in effective fund disbursal

PLI list currently anchored towards legacy players:

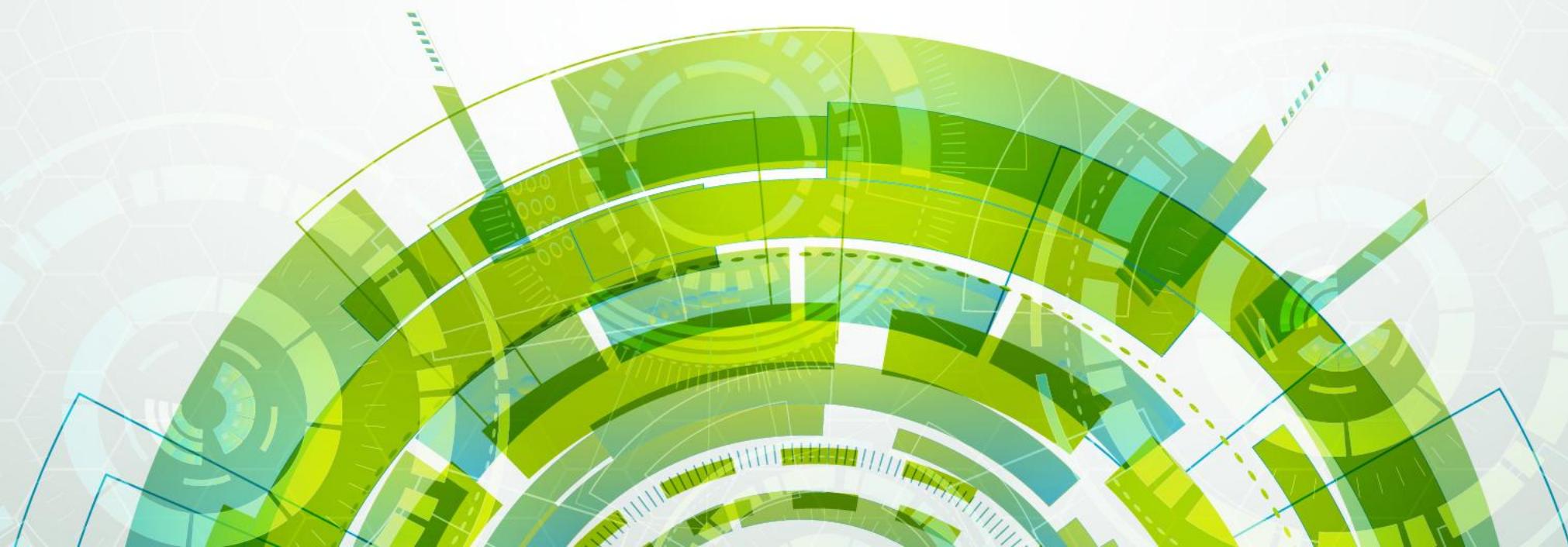
- **High threshold requirements** (INR 10K Cr annual revenue for OEMs and INR 500 Cr for s) limit startup and MSME participation
- Non-PLI status for such players results in **challenges in accessing finance and investments** – **stifling innovation** and limiting **risk appetite** amidst startups, limiting innovation in the EV sector

Current PLI structure is narrow in its focus on outcomes:

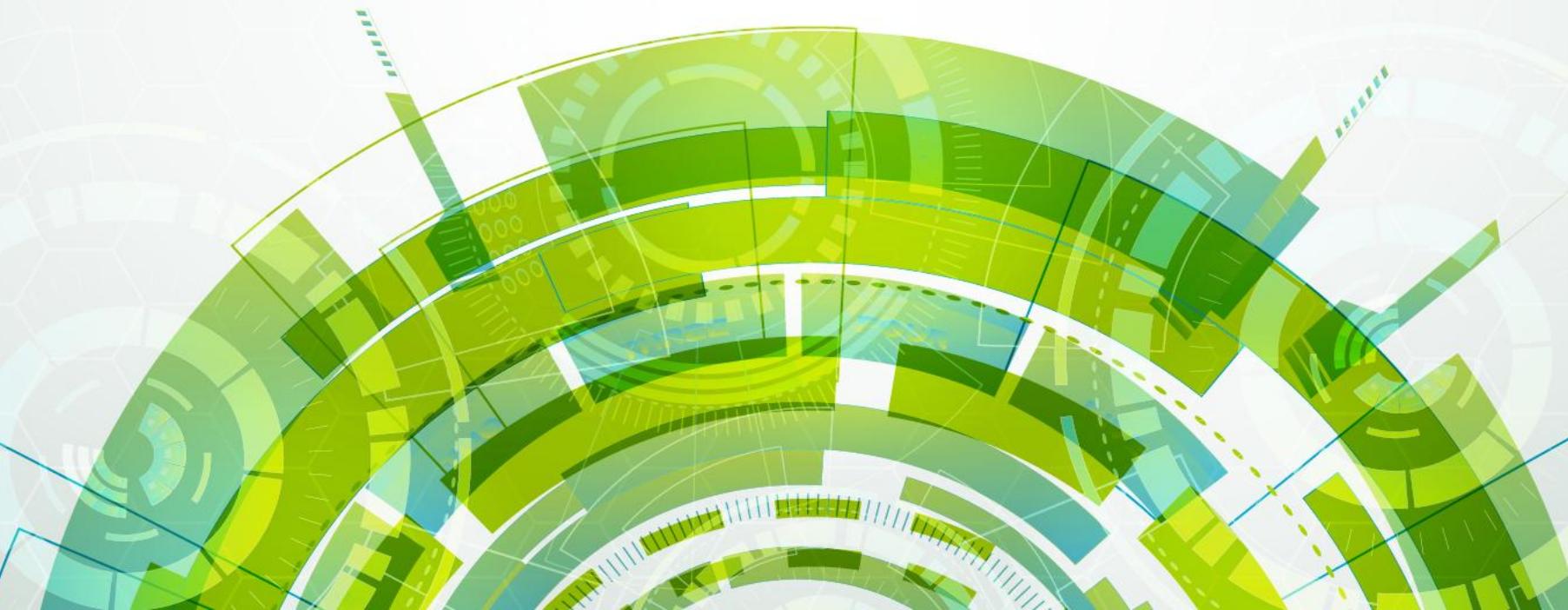
- Current structure of the scheme doesn't incentivize **ecosystem level development**, due to narrow focus limited to **DVA in manufactured goods**
- However, there are other, equivalently critical outcomes that can be tied to the PLIs – for e.g. R&D, Workforce, Exports)

Overcoming these challenges and improving the effectiveness of funds allocated under PLIs requires structural amendments

Separate set of threshold limits for small-scale actors:


- **Re-evaluate PLI process and eligibility criteria** to make them friendly to startups and MSMEs
- PLI status could **enable access to finance** and investment for **non-legacy actors**, **facilitating innovation** in the sector

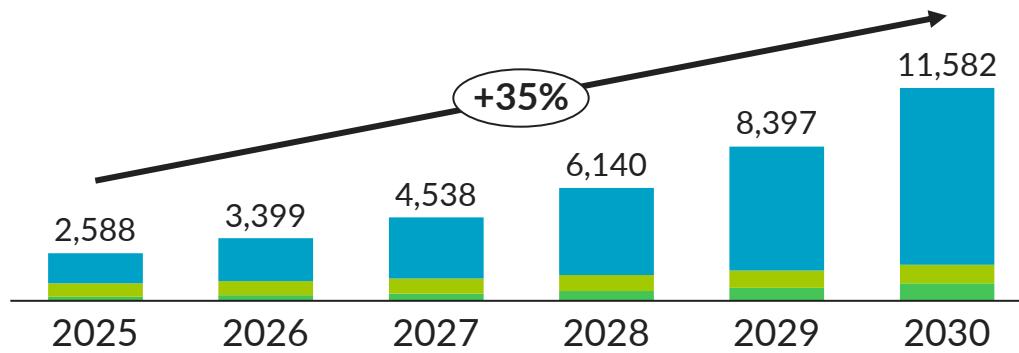
Tie PLI requirements to other critical sector outcomes:


- Expand **fund disbursement metrics** to track broader **ecosystem outcomes** (e.g., number of patents filed, job creation, export volume)
- Widening PLI focus could result in **innovation and scale-up** across **upstream** (REOs, Rare Earth Magnets) and **downstream segments** (new-tech based components)

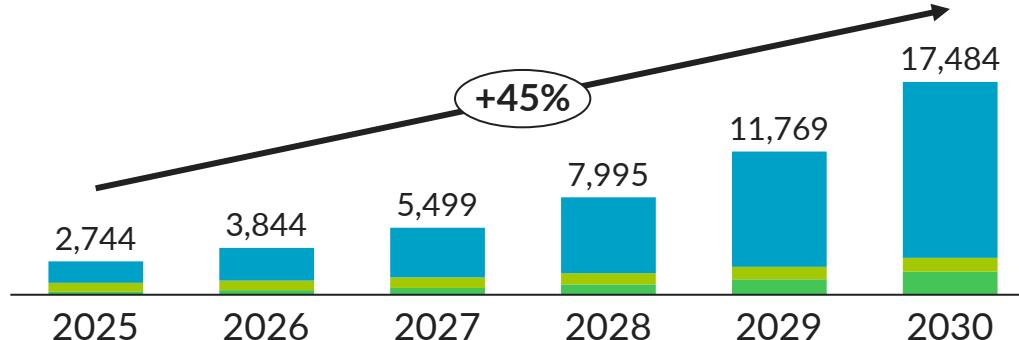
ANNEX

SUB-SECTION ONE

DEMAND & MARKET ARCHITECTURE



India's annual EV registrations are expected to grow to 4X by 2030, with the potential for ~6X growth by 2030, driven by recent policy support measures and active market innovation


Projected annual EV registrations, '000 vehicles, 2025 – 2030

EV - 2W EV - 3W EV - 4W E-Bus E-Trucks

Conservative Scenario

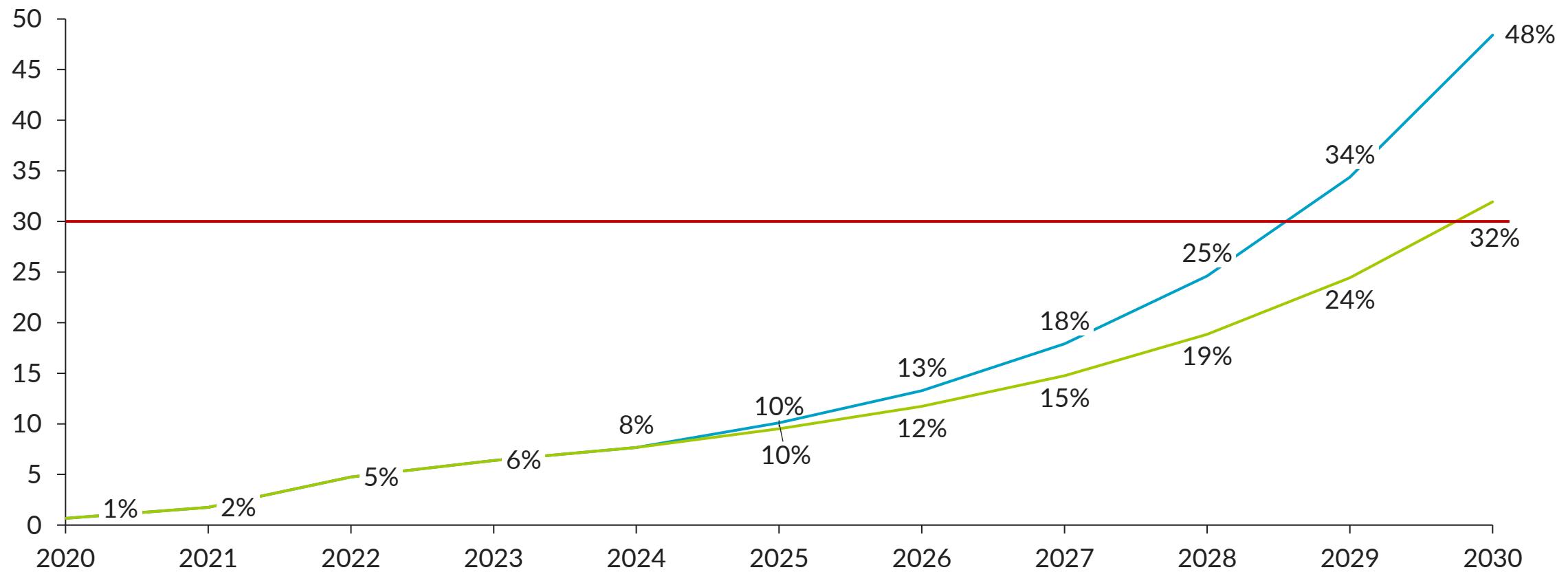
Optimistic Scenario

Scenario Descriptions

Conservative scenario assumes:

- **No additional subsidies** announced beyond PM E-DRIVE, and the existing schemes are just extended
- **Limited advancement in Total Cost of Ownership** across vehicle segments
- **Limited product innovation** and therefore limited model availability across all EV segments and limitations on range of EVs (particularly in E4Ws, E-Buses & E-Trucks)

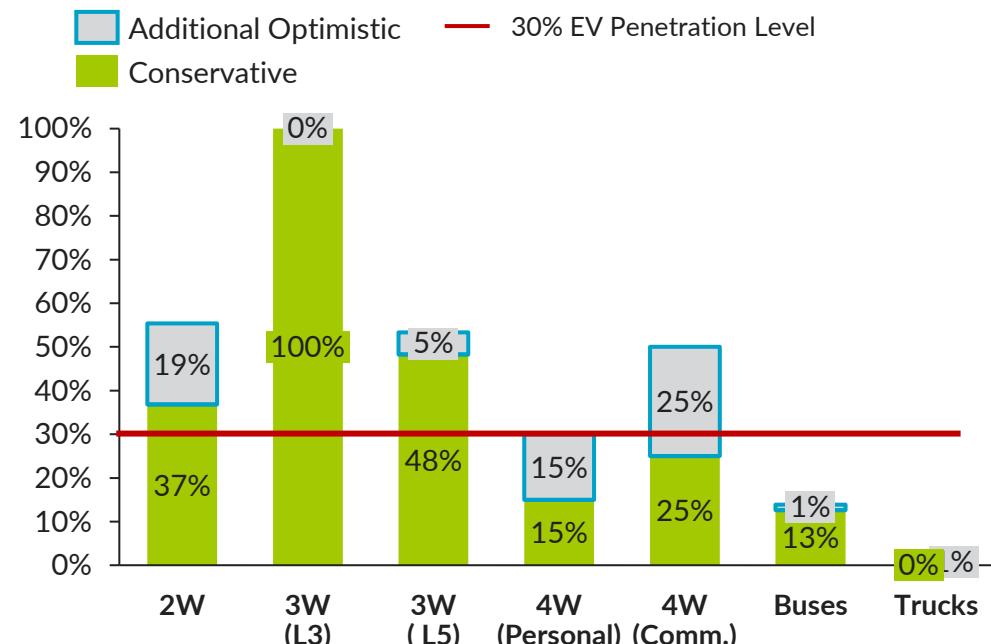
Optimistic scenario assumes:


- **E2Ws & E3Ws:** **Electrification of high speed 2Ws** & continued subsidies beyond 2026
- **E4Ws:** ACC PLI helps boosting **R&D** in batteries **bringing down the battery costs** and more models in the entry level segment for 4Ws
- **E-buses:** Gross Cost Contract (**GCC Models**) and other alternative financing solutions driving up the penetration in **private bus market & SRTUs**
- **E-trucks:** **Product innovation** enables the **right price point** for operators to transition, and additional subsidies announced on top of the existing subsidies under PM E-DRIVE scheme
- **Charging Infrastructure:** Adequate **fast and ultra-fast** charging infrastructure is built in **top 5 Metros** by EV adoption and **top 20 high volume freight corridors**

India is expected to reach 32-48% EV penetration in EV sales, exceeding its target of 30% penetration by 2030

From an overall EV sales view across vehicle segments, India is well placed to meet its EV 30@30 target

Annual sales penetration of EV, %, 2020 – 2030


— % EV Penetration (Optimistic) — % EV Penetration (Conservative)

While adoption momentum in 2W and 3W segments will drive progress in the 4W segment, penetration in buses and trucks segment is expected to remain limited

4Ws, E-Buses & E-Trucks to see slowest adoption and therefore lower penetration

Segment wise EV Penetration by 2030, %

Total Cost of Ownership by Segment, INR/km

	Segment with TCO for EV > ICE						
EV	0.7-2	2.94	1.87	19	4.5	33	9-73
Non-EV	2.5-3.3	4.25	3.6-4.5	12-15	6.3-7.2	40	7-48

(1) Self-Charging Hybrid Electric Vehicle; (2) Hybrid Electric Vehicle;

Source: Dalberg Analysis, Industry Reports, [VAHAN Dashboard](#)

Driving adoption beyond conservative scenario needs focus on segment specific challenges (e.g., cost of ownership, financing etc.)

E2Ws

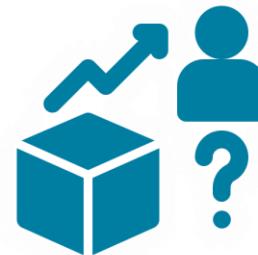
- **Electrification** is mostly **limited to mopeds and low-speed E-2Ws**, not high-speed bikes
- Rider safety concerns in low-speed E-2Ws category for last mile delivery solutions and Q-Commerce Industry
- **Uncertainty in resale value** leading to higher loan premiums and interest rates for E-2Ws

E3Ws

- **Fragmented market** compared to highly concentrated ICE market making it highly competitive
- **Nascent battery-swapping infrastructure**, critical to reducing charging time in commercial uses

E4Ws

- **Higher Total Cost of Ownership for personal use case** compared to CNG/ICE models due to lesser utilization
- Exclusion of private use case E-4Ws in key schemes (FAME II scheme, PM E-DRIVE scheme)
- **Competition from SHEVs¹ and HEVs²** given their higher efficiency


E-Buses

- Significantly **higher upfront cost** (1.3~2.5x of ICE equivalent models)
- **Limited number of intercity bus models** meeting required benchmarks for daily operations
- **Financing risks** and high bank guarantees required for Gross Cost Contract models
- **Reluctance in private bus market** for lack of assured revenues and adoption roadmap

E-Trucks

- Significantly **higher upfront cost** (2~3x of ICE equivalent models)
- **Battery weight reduces range-per-charge** creating a payload penalty

Boosting EV adoption would require addressing existing demand blockers such as gaps in product offerings and expectations, lack of charging infrastructure but also mitigating the impact of higher DVA on EV prices

Existing demand blockers

Persistent challenges including inadequate **charging infrastructure** (~ **100K deficit** of charging points as of Aug 2025) limited availability of **finance** for commercial segments (up to **7%¹** higher interest rates as compared to equivalent ICE Buses and Trucks)

Increasing localisation will raise EV prices and dampen demand

At 50% localisation, domestic manufacturing of batteries, motors, and electronics could raise EV prices by **15-25%** despite current subsidies and PLI Schemes

Landed cost of Batteries will primarily drive this increase in EV prices – Domestically produced Batteries could be **40% costlier** than imported batteries.

This could result in a need for **Viability Gap Funding** worth INR 4,500 - 6,500 Cr, particularly for E-4Ws, as proposed in the Battery Indigenisation Pathways – not covered in this document to avoid duplication.

To promote further EV adoption, the next push has to come from building adequate charging infrastructure, enabling product innovation & financing to reduce the upfront costs and adoption incentives

Pathway	Investment Required	Target outcomes	KEY ENABLERS
A Supporting product innovation in E-trucks & financing interventions in E-buses	INR 4,900-5,500 Cr ²	<ul style="list-style-type: none"> ~65,000 E-Buses & ~27,000 E-Trucks to be added by 2030 	<ul style="list-style-type: none"> Enabling tech transfer in MHDT⁶ segment and launching innovation challenges for OEMs for new products Outlining an additional ~INR 3,000 Cr as guarantee pool fund under the existing PM E-Bus Sewa PSM Scheme to support adding ~32k more buses
B Offering Viability Gap Funding to offset price increase in E4Ws due to improved localisation	INR 4,500-6,500 Cr <i>Capped at 4W OEMs; already included in Battery Indigenisation Pathways, not proposed as additional investment within this document</i>	<ul style="list-style-type: none"> Potential to add ~5.1 Mn E4Ws till 2030 	<ul style="list-style-type: none"> Extending existing subsidies (e.g., FAME II), spread over the next 4 years and linked at various stages of the EV production to offset the 15-25% price increase in E4W segment Addressing the key challenges with the design and execution of subsidy disbursement to improve the effectiveness of policy
C Enabling CPOs ¹ to expand charging infrastructure by improving business viability of setting up and operating charging stations	INR 4,000 Cr ³	<ul style="list-style-type: none"> Supporting establishment of ~7.5 Lakh additional charging points by 2030, with focus on top 5 Metro cities⁴ (by EV adoption) in India, and top 205 high volume freight corridors 	<ul style="list-style-type: none"> Subsidizing EVSEs and upstream charging infrastructure for depot CPOs Building a one window system for CPOs for the entire end-to-end process of setting up a charging station A centralized end-consumer app built on the existing capabilities of BEE and e-AMRIT with features such as locations of charging stations, waiting time, etc.

Additionally, ~INR 31,700 Cr available undisbursed funds under PM E-DRIVE and PM E-bus Sewa and INR 4,800-5000 Cr private sector investment will be required to support higher adoption of E-trucks and E-buses, and accelerate charging infrastructure development

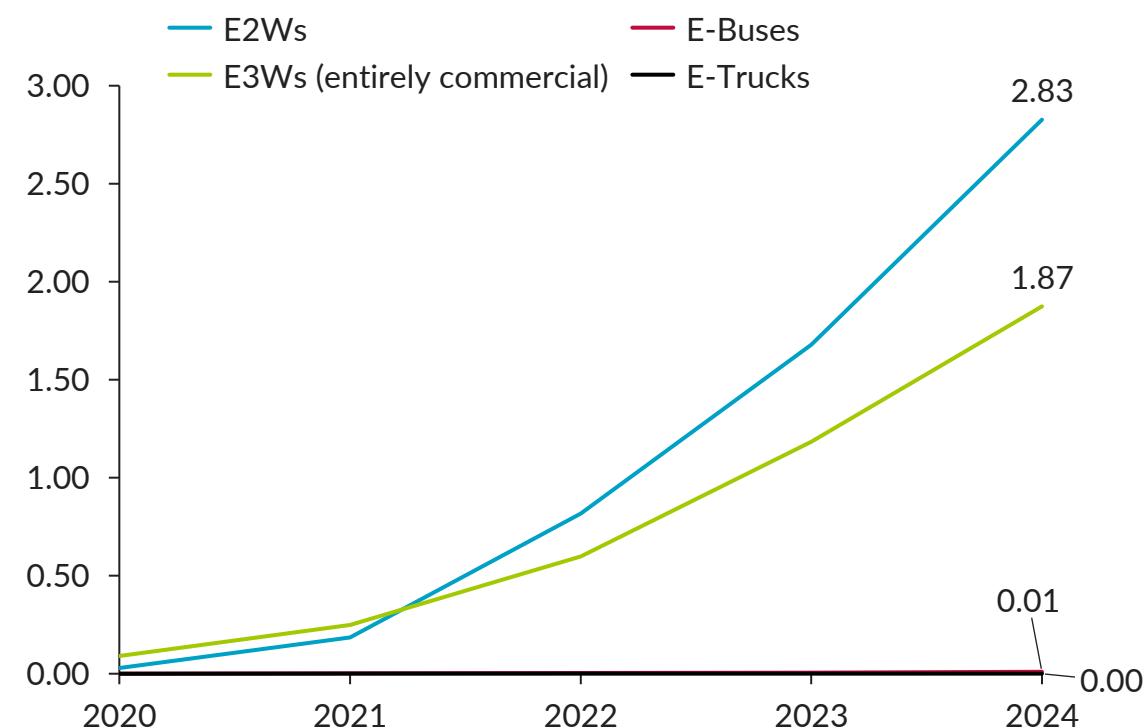
(1) Charging Point Operator; (2) Detailed [ahead](#); (3) Refers to incremental investment required for scaling charging infrastructure. Detailed [ahead](#); (4) Delhi, Bangalore, Mumbai, Hyderabad, Pune, (5) [MHI, PM E-DRIVE: Draft guidelines on EV PCS, 2024](#); (6) Medium and Heavy-Duty Trucks

Despite strong policy momentum, the growth of commercial segments such as E-trucks and E-bus segments lags critically behind E2Ws and E3Ws in terms of penetration

Multiple policies, subsidies and initiatives have been launched to expedite the E-bus and E-truck adoption

E-Buses

- Under **FAME II** (2019-24), **6,862 E-buses** were sanctioned for intra-city public transport
- In the subsequent **PM E-DRIVE** scheme an additional outlay of **INR 4,391 Cr** was dedicated for E-buses
- Parallelly, a dedicated **PM E-Bus Sewa** scheme was launched to enable deployment of **38,000 E-buses** with a **INR 3,435 Cr** between FY 2024-25 & 2028-29



E-Trucks

- First policy support came in July 2025 under the PM E-DRIVE scheme with incentives ranging from **INR 2.7 - INR 9.6 lakh based** on the Gross Vehicle Weight (GVW) for scrapping an old diesel truck and buying an E-truck
- An estimated **5,643 E-Trucks** across the **N2 & N3 categories** to be supported with a focus on **1,100 E-trucks in Delhi** considering the urgent need to improve air quality in the city

However, the segment wise stock penetration for E-buses & E-trucks stands at a nominal **3.12%** & **0.01%** respectively

Total EV stock for E2Ws, E3Ws, E-buses & E-trucks (2020-2024), Mn units

While several challenges hinder adoption across these segments, financing remains the key barrier for E-buses, whereas product readiness poses the main challenge for E-trucks

LEVERS	E-BUSES	E-TRUCKS
Product	<ul style="list-style-type: none"> Heavy battery packs reduce cabin and luggage space, lowering passenger capacity, range and ground clearance Limited model diversity (9–12 m standard buses dominate; smaller feeder / mini-bus variants scarce) Issues with battery management system software and batteries in extreme operating conditions 	<ul style="list-style-type: none"> Few models exist in heavy-duty long-haul trucking, which is currently responsible for 49% of transport sector emissions Increased weight from batteries can reduce the payload capacity by 15-20% thus lowering potential revenue Existing battery capacity and degradation over time further reduces range limiting route options
Financing	<ul style="list-style-type: none"> 1.3 – 2.5X more expensive than diesel buses Delayed or irregular payments from STUs / PTAs under Gross Cost Contracts (GCC) Concession tenure (10–12 years) often mismatched with loan tenure (6–7 years), creating negative cash flows Limited participation from private financiers and NBFCs; dependence on sovereign or blended finance 	<ul style="list-style-type: none"> 2-3X more expensive than diesel trucks Financiers hesitant due to lack of proven business models Lenders charge higher premiums and interests up to 7 percentage points higher than ICE variants Covered by few insurers due to limited operational data and uncertainty about repair/replacement costs, and residual value Lag in subsidy announcement and disbursal render public efforts disadvantageous – cause misguided price expectations
Charging – infrastructure related	<ul style="list-style-type: none"> Slow charging and poor depot infrastructure cause more downtime therefore ~1.2 E-buses needed to replace 1 diesel bus Depot electrification is expensive and grid dependent with High Tension (HT) lines costing ~ INR 10 Cr 	<ul style="list-style-type: none"> Limited access to charging stations along highways; existing ones can prioritize cars, lack fast and ultra-fast charging points Limited charging infrastructure prevents economic feasibility for Heavy-duty long-haul trucking – typically requires a single charge cycle to last almost an entire day for feasibility High charging costs – rates of INR 18–23/kWh increase operational expenses
Operations	<ul style="list-style-type: none"> Route scheduling due to range and charging downtime affect reliability Low charger-to-bus ratio and limited driver/technician training 	<ul style="list-style-type: none"> Charging adds downtime thereby increasing the overall operational costs as trip time increases Limited driver/technician skills and fragmented logistics ecosystem

Source: Expert Interviews, [ITDP India, Status of Electric Buses in India, 2022](#); [CEEW, Road ahead for Private E-buses in India, 2024](#); [WRI India, Real world electric bus operation: Trend in technology performance, degradation, and lifespan of batteries, 2024](#); [ICCT, Charging infrastructure needed to support India's full transition to battery electric trucks by 2050, 2025](#); [CEED India, Decarbonizing India's trucking sector: Potential for Zero-emission trucks, 2025](#); [CPI, Just transition to Zero-emission Trucking in India, 2024](#); [Office of PSA, ZET Adoption India and its Impact on Emission and Energy Report, 2025](#);

Action is needed across multiple fronts to expedite adoption of e-buses and e-trucks with spends totalling INR 4,900-5,500 Cr

LEVERS

Product

E-BUSES

- Fund OEM-tier-1 partnerships and pilot grants to bring missing variants (mini/midi, hill-city configs, high-heat battery-thermal packages)

Financing

- Allocate an additional INR 2,900-3,000 Cr as a guarantee / risk-pool fund to back PPP / GCC contracts to support 32K more buses under PM E-Bus SEWA PSM scheme
- Classify E-buses under priority sector lending and associated charging and upstream infrastructure under infrastructure financing¹

Charging - infrastructure related

- Plan depots to a 1:3 charger-to-bus benchmark and budget HT grid works upfront
- Piloting charging pads embedded at bus stops to enable wireless charging for buses during the stoppage time

Operations

- Mandate telematics, predictive maintenance, and charger-queue management in GCC KPIs, with standardized state-level driver and technician training to optimize schedules and charging

E-TRUCKS

- Create a Heavy-Duty E-truck technology access window to boost tech transfer between global E-truck innovators and Indian OEMs for licensing/CKD kits, validation for Indian duty cycles (heat, grades, axle loads)
- Launch an innovation challenge for OEMs to engineer e-trucks tailored to Indian conditions

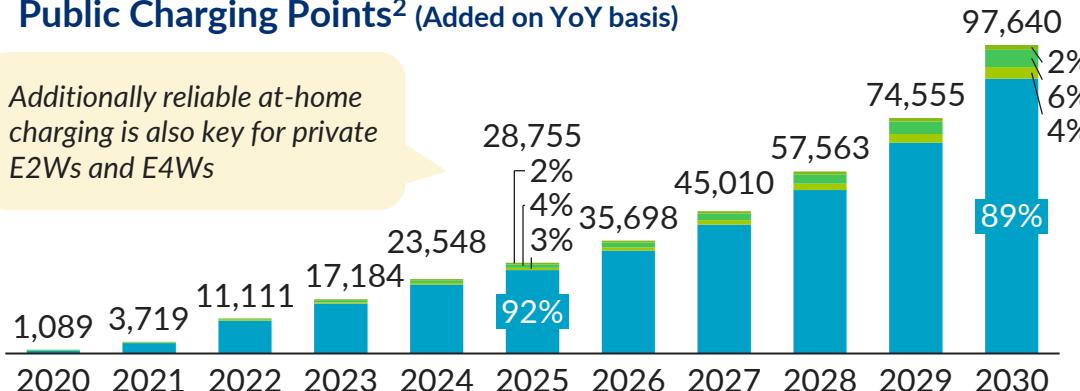
- Set up a national performance-registry / guarantee fund with capital of INR 2,000-2,500 Cr to support underwriting and risk sharing for NBFCs / insurers underwriting e-truck fleets
- Extend and increase the subsidy cap under PM E-DRIVE for the first 10,000 E-trucks

- Target ~2 GW truck charging by 2030 in 5 key states (>70% charging demand), clustering ≥350 kW chargers with rest/parking at toll-proximate sites; align roadmaps with site-level grid agreements and anchor rollout along Ministry of Power's 12 E-highway corridors
- Develop a clear framework to standardize battery packs for E-trucks to enable battery swapping infrastructure

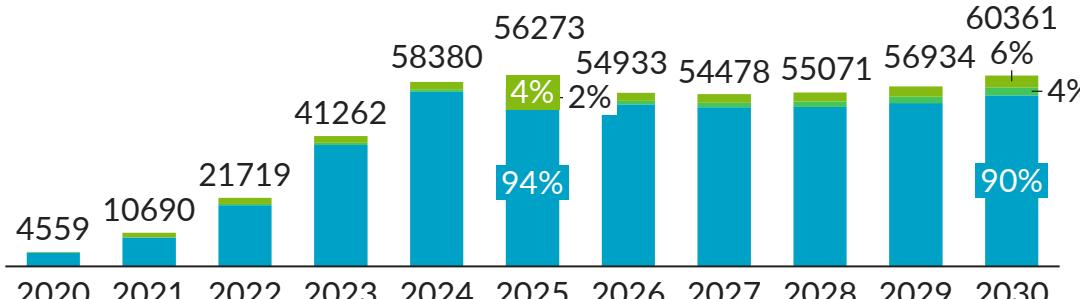
- Require shipper-fleet-CPO tripartite MOUs for guaranteed volumes and SLAs, plus algorithmic route and charge scheduling to maximize payload-time economics

Critical Solution

(1) Infrastructure financing: Refers to the multifaceted process of securing capital for the development, construction, maintenance, and upgrading of large-scale public and private infrastructure projects; Source: Dalberg Analysis, Expert Interviews, [MHI SOP for PM E-Bus Sewa Payment Security Mechanism Scheme, 2025](#), [SmartcitiesDive](#), [Wireless charging](#), [MoP, Annexure on EV Charging Infra guidelines, 2022](#); Office of PSA, ZET Adoption in India and its Impact on Emission and Energy Report, 2025


Building more than 8.5 lakh charging points (public & depot) in India is necessary for meeting energy needs of growing EV stock and drive further adoption by boosting consumer confidence

India will need to have 3.95 lakh public charging points & 4.75 lakh depot charging points in an optimistic scenario¹



Public Charging Points² (Added on YoY basis)

Additionally reliable at-home charging is also key for private E2Ws and E4Ws

Depot Charging Points (Added on YoY basis)

(1) PHEVs have been excluded from the analysis on charging infrastructure requirements, due to minimal charging requirements and preference of at-home/office charging; (2)

Charging Station: A site with one or more charging points which can provide charging to more than one vehicle at a time; Source: Dalberg analysis; [McKinsey and Company, New](#)

[twists in the electric-vehicle transition: A consumer perspective, 2025](#); [Oliver Wyman Forum, Why electric vehicles are here to stay, 2025](#); [Iowa State University, Effects of Charging](#)

Infrastructure on EV Adoption: US Study, 2024, AMPPAL, Percentage of increase in EV sales when charging station installed at apartment building, 2025

Investment in charging infrastructure is an urgent priority since it is a critical enabler for demand acceleration

Industry reports indicate positive correlation between uptake in demand and charging infrastructure

- 29% prospective EV buyers need **gas station-equivalent coverage** of charging stations and 24% want **higher charging speeds** as their **tipping point** to buy an EV
- 24% of hybrid EV buyers cite **charging station availability** as a barrier in buying an EV

Building charging infrastructure has further driven the EV adoption

- A US study shows that on **adding one charging station** per 1k people, there will be a **2% increase in EV adoption**
- Building residential charging infrastructure has led to a **15% increase in EV ownership** among residents within the first year

However, meeting 2030 charging infrastructure targets will require overcoming key challenges such as poor CPO business models, complex approvals, and grid load management

Poor business proposition for CPOs due to under utilization

- **Under utilization:** Public charging infrastructure globally remains severely underutilized making the time for **cost recovery** for CPOs in some cases as long as **48 months**
- **High Upfront Cost:** The equipment cost of setting up a charging station (2 fast charger and 2 slow charger) is around **INR 30 lakh**. Additionally, setting up large scale public and depot charging stations in metro cities is a problem due to lack of plot area and higher leasing costs
- **Electricity Tariffs:** Electricity tariffs in high load areas are high for CPOs despite the subsidized tariffs. Ex: High tariffs in port areas

Complex regulatory approvals for setting up Charging Stations

- **Complex Regulatory Landscape:** CPOs find it difficult to coordinate with multiple different stakeholders (Land Dept., Finance Dept., DISCOMs) at the same time and meet their requirements in tandem
- **Asynchronous Policies:** Persistent misalignment between state and central fire safety guidelines means resident societies often deny NOCs for EV charging installation, citing unresolved fire safety concerns
- **Longer Subsidy Disbursement Timelines:** CPOs have reported delays in tendering, implementation and post implementation phase with the disbursement of subsidy on charging equipment and upstream infrastructure taking place in tranches and spread over a timeline of 52 weeks

Grid load due to congested energy demand

- **Increase Grid Load At Peak Charging Times:** During peak charging times (night-time in residential areas and day-time at industrial areas) there is significant load on the installed grid load capacity leading to higher tariffs
- **Limited Informational Awareness:** Limited information about the real-time availability of charging guns and expected wait times at stations often causes EV users to crowd popular locations, increasing overall wait times and inefficiency

c

Although, the Government has already taken steps in the right direction with several initiatives, following interventions with incremental ~INR 4,000 Cr of investment in charging infrastructure can help address gaps

Current initiatives

- Govt. agencies encouraged to **lease sites** at concessional rates via a standard **10-year** model agreement with minimum **revenue-share of INR 1/kWh**
- EV charging **tariffs capped** at DISCOM's **Average Cost of Supply (ACoS)**: $0.7 \times \text{ACoS}$ during solar hours and $1.3 \times \text{ACoS}$ otherwise
- GST on EV chargers/stations** reduced to **5%** from 18%

Proposed future interventions

- Subsidizing EVSEs and upstream charging infrastructure for depot CPOs**
- Standardizing the **subsidized rates** for land as a percentage of the property value
- GST on charging services** to be reduced from 18% to a lower tax slab (preferably 5% or a tax exemption)
- Facilitating/Building a **CPO focused portal/app** to help them **track** the utilization rates and other key **business metrics**

Investment Required

- Government already allocated INR 2,000 Cr in subsidies, **additional subsidies** worth **INR 4,000 Cr** needed to reach **8.7 Lakh** Charging points

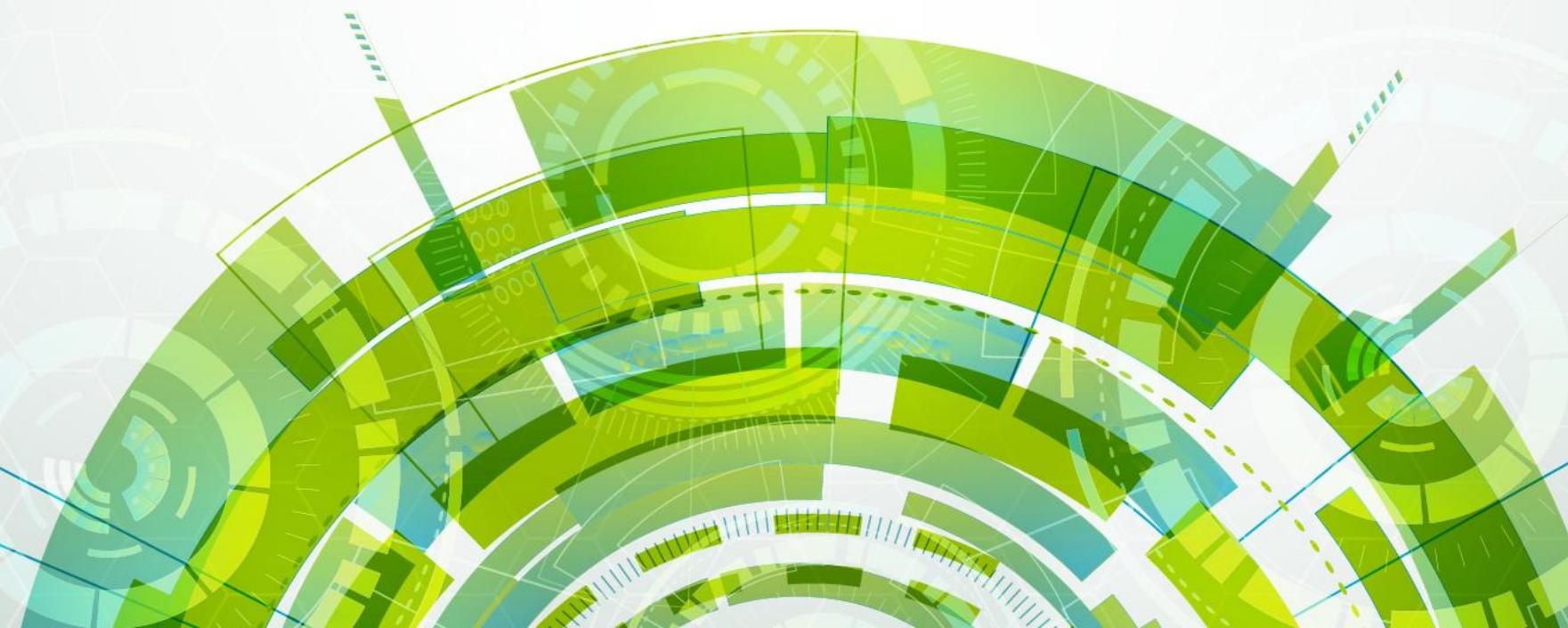
Support Business Economics for CPOs

Improve Ease of Doing Business for CPOs

Managing Grid Load

- No electricity trading license required** to set up & operate a charging station
- DISCOMs **must provide new connections** to CPOs within a specified number of days depending on the charging station's location
- Customer friendly and an **online single-window system** for **application** and **granting electricity** connection to CPOs
- Standardized safety** and **inspection norms** for EVSEs

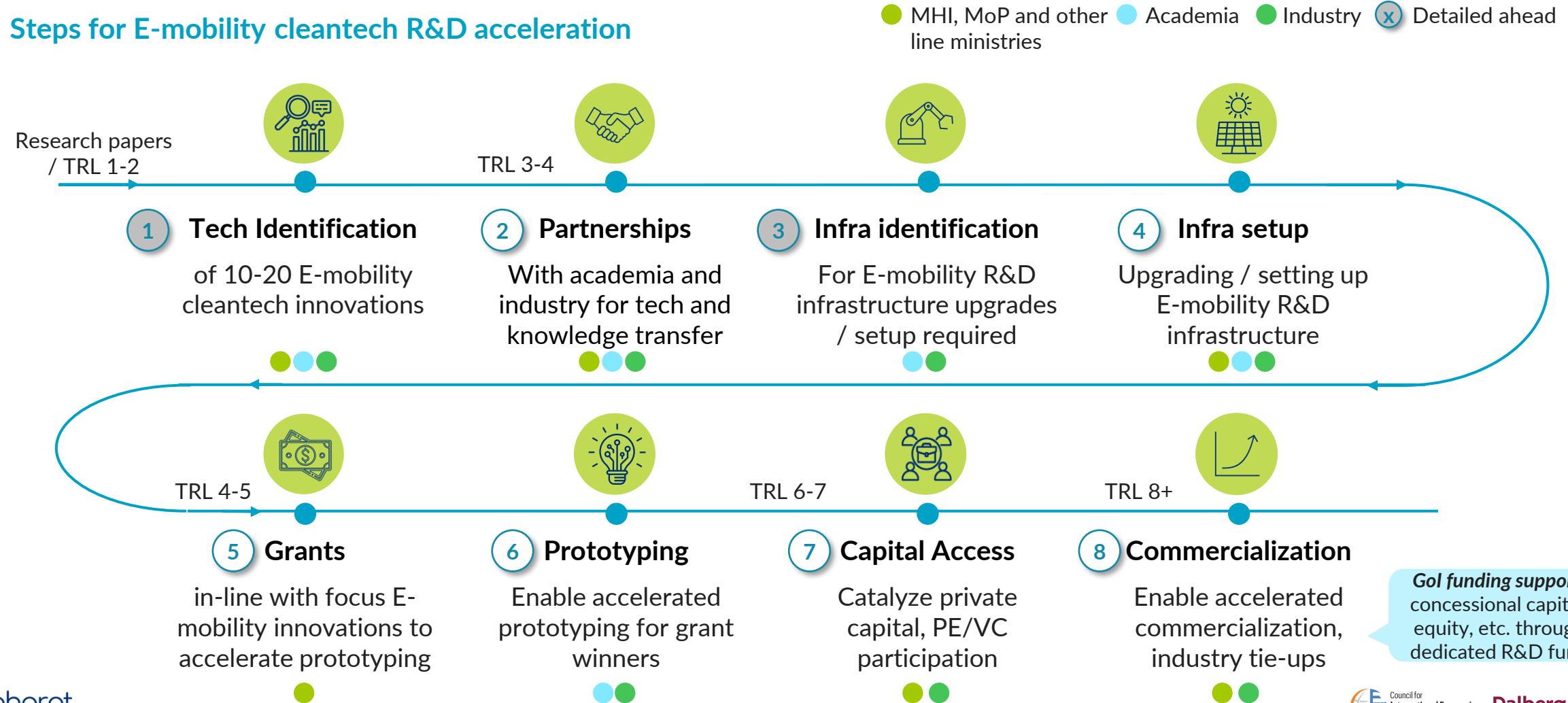
- 2024 EV Charging Guidelines **incentivize charging during "solar hours"**, smart charging, V2G technology integration for CPOs
- Bureau of Energy Efficiency, e-AMRIT portal and **several** other CPOs have individual **end-consumer apps** for charging infrastructure


- A **consumer centric app** built on the existing capabilities of BEE and e-AMRIT with features such as locations of charging stations, waiting times at a particular station, estimated cost of charging, route planning, etc.
- Special power lines** for public and depot charging stations to have uncongested demand with concessional tariffs

Prioritized Solution

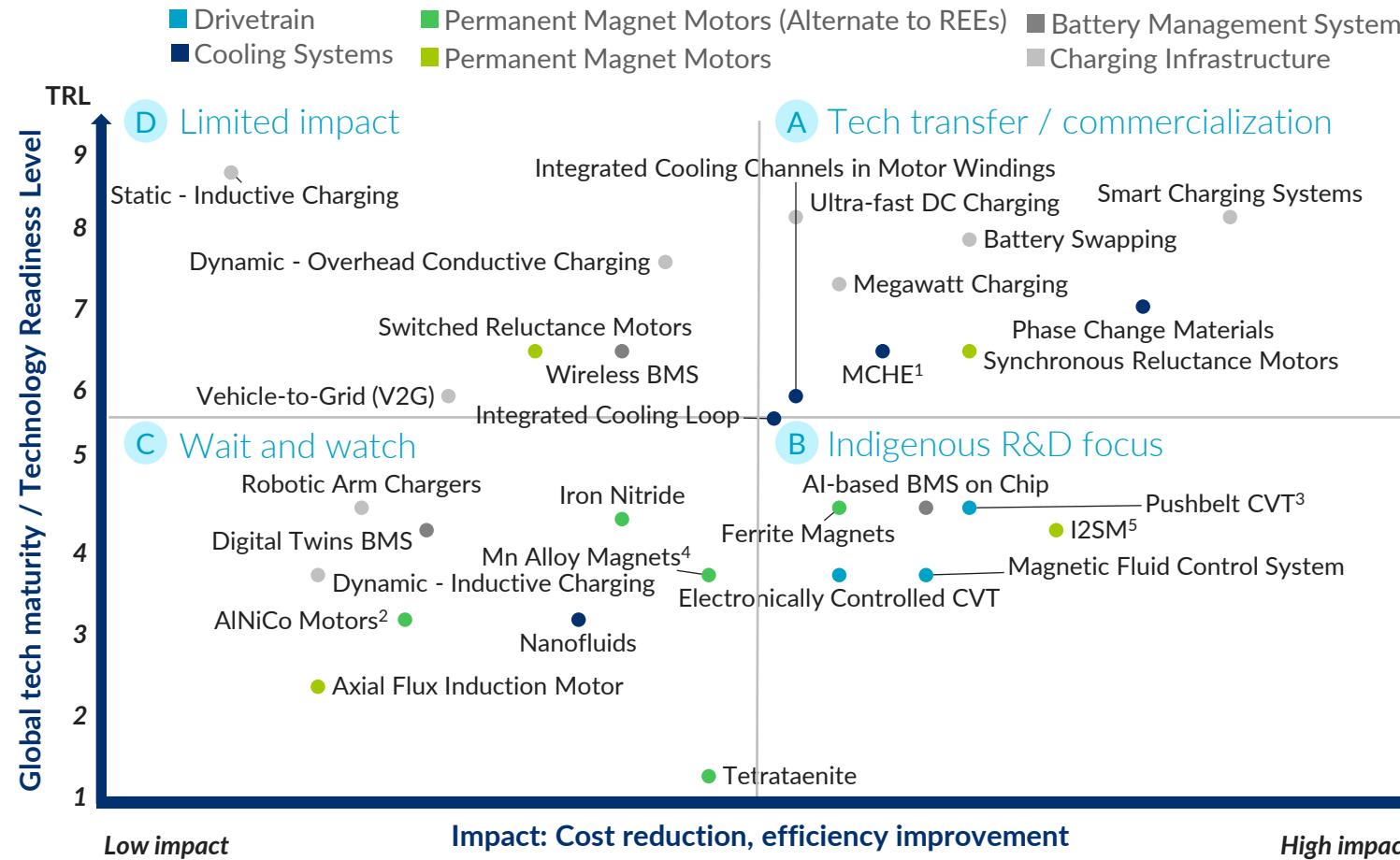
Source: Expert Interviews, [MHI, Operational Guidelines for EV Public Charging Stations, 2025](#); [Cars24, EV Charging Station Cost in India, 2025](#), [Energy Strategy Reviews, Financial Feasibility of EV charging stations in Thailand, 2025](#), [CEEW, What is the cost of charging EVs?, Energy Reports, Empowering E-mobility: Day ahead dynamic time of use tariff for EV charging, 2024](#), [MoHUA, Amendments in Model Building Bye-laws for Charging Infra, 2019](#), [PIB MoF, GST rate on EVs reduced from 12% to 5%, 2019](#), [PIB MHI, India accelerates National EV Charging Grid under PM E-drive, 2025](#)

SUB-SECTION TWO


E-MOBILITY R&D & PRODUCT INNOVATION

India could accelerate indigenous innovation across the electric mobility value chain from identification to prototyping and commercialization through an industry-academia-government collaborative approach

MHI, MoP and ANRF could establish a Core Working Group (with representation from industry bodies like SIAM & A; academia and government) to spearhead this effort and engage relevant stakeholders across various steps


Steps for E-mobility cleantech R&D acceleration

High impact E-mobility technologies such as Pushbelt CVT, Ferrite Magnets, etc. could be prioritized to drive targeted R&D efforts across critical EV systems and components – Drivetrain, Motors, Cooling Systems, etc.

NON-EXHAUSTIVE

Focus R&D and innovation technologies: E-Mobility

Key Insights

Top 10-20 technologies for commercialization / tech-transfer and indigenous R&D **display greater efficiency** than conventional variants:

- Tech transfer:**
 - Synchronous reluctance motors and phase change materials** offer greater efficiency than conventional variants (PMSM⁶ and Liquid cooling);
 - Ultra-fast DC and Megawatt Charging Systems** reduce vehicle down-time to nearly that of regular gas station refueling
- Indigenous R&D:**
 - Ferrite Magnets** offer comparable power efficiency, and **In-Rotor Inductively Excited Synchronous Motors** demonstrate greater efficiency than PMSMs;
 - Pushbelt and Electronically Controlled CVT** offer higher transmission efficiency than conventional gear systems

Establishing select, high-quality open access R&D development and testing labs as independent facilities operated under a PPP structure, and offering targeted grants to drive public-private collaboration and ensure maximum resource efficiency

KEY LEVERS

RATIONALE

1 Focus on select, state-of-the-art, open-access facilities

- Focusing efforts on **select R&D facilities** is critical to **reducing fragmentation** of research across labs and helps in **optimization of infrastructure** and **talent**
- Upgrading existing labs into **State-of-art facilities** (e.g. R&D labs at incubation centers such as Centre for Automotive Research and Tribology at IIT Delhi) can **enable efficient utilization of R&D funds**
- Ensuring **wider access** (for startups and private sector) to such facilities is critical to **foster technology innovation**

2 Dedicated grants to support RnD in critical aspects of E-mobility

- Offering **focused grants** can help develop a **comprehensive EV R&D ecosystem**, promoting indigenised innovation across various **aspects of E-mobility** – (charging infrastructure, EV components (motors, power electronics, etc., batteries), Recycling and second use of EVs)
- Drives **investments** towards **priority¹ technologies** which offer cost and efficiency advantages (e.g., Synchronous Reluctance Motors, Phase Change Materials, etc.), across different aspects of E-mobility

3 Consistent, well-trained manpower

- **Fixed and well-trained manpower** is critical to ensuring **proper management** and **maintenance** of state-of-the-art equipment, extending the life and utility of infrastructure investments

India could invest INR 2,800-5,000 Cr across 6-8 R&D labs to upgrade current E-mobility R&D labs, establish new facilities, and ensure needed human resource and efficient lab operations

DEVELOPMENT LABS		TESTING LABS
	Number of labs	4-6 development labs 3-4 COEs (motors, power electronics, systems integration and 1-2 innovation centers)
	Cost of labs	INR 1,700-2,800 Cr
	Prospective existing infrastructure for upgrade	 IIT Delhi: Centre for Automotive Research and Tribology IIT Madras: Centre of Excellence in Advanced Automotive Research
	Machinery needs	<p>High precision equipment suited for R&D which is customizable and agnostic across different EV and battery segments</p> <ul style="list-style-type: none"> Material R&D and chemical wet-lab equipment Rotor magnet insertion equipment, SMT¹ lines Battery cell simulators, current and voltage measuring tools <ul style="list-style-type: none"> Material testing equipment Efficacy testing machines (including lab, field, and commercial testing)
	Manpower and support needs	<ul style="list-style-type: none"> Trained manpower with ability to use advanced equipment (separate upskilling for current researchers) Independent management team reporting to own Board vs. public/ private sector researchers to ensure maximum utilization, efficient operations Market needs assessment of upcoming tech trends to inform relevant research

(1) Surface Mount Technology used to assemble Printed Circuit Boards used in Battery Management Systems and Power electronics
Source: Academia and industry experts

In addition to government support, private sector (including large OEMs, EV players) investment is required to align E-mobility R&D priorities with industry needs, and build shared R&D infrastructure

Private sector role

Key players: Large OEMs (Mahindra Electric, TATA Motors, etc.), component manufacturers (Bosch India, Sona Comstar, etc.) and other industry conglomerates (TVS Group, Bharat Forge)

Government support

Key players: Relevant line ministries, e.g. MHI, MoP, and other related bodies driving R&D efforts, collaboration, and funding (e.g. ANRF, SIAM, A etc.)

1 Provide strategic input for industry-aligned R&D

- **Support identification** of scalable, high-impact technologies across the E-mobility value chain and **commercialization pathways**
- **Designate nodal representatives** in industry associations to drive E-mobility R&D beyond firm-level efforts

2 Increase private R&D investment

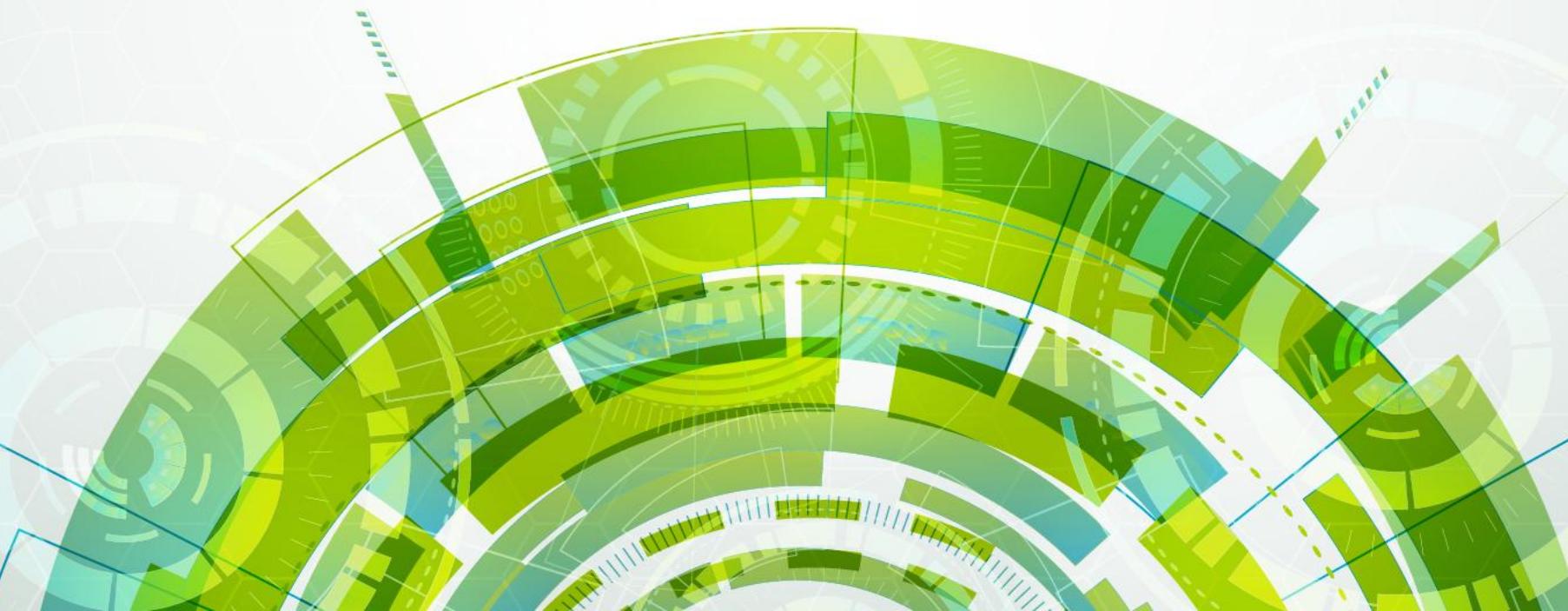
- **Invest in prototype development and commercialization**, and support **tech transfer** by investments in academia, R&D
- **Invest in shared infrastructure building** (e.g., setup of open-access labs in PPP mode with public sector players)

3 Enable greater R&D infrastructure sharing

- **Enable shared access to existing R&D infrastructure** to maximize resource utility and collaboration

- Ensure integration of **private sector inputs** in decision-making;
- **MHI/MoP** could potentially drive coordination and help align government-industry priorities across **Batteries, Motors** and **EV Charging infra**; **MEITY** could potentially provide support for **BMS** and **Power Electronics**

- **Co-finance grants with private sector** basis alignment with focus EV technologies & clear TRL-based commercialization pathways **INR 1,000-1,200 Cr government grant funding¹** for E-mobility R&D (Building on existing R&D schemes, e.g. Mission of Advancement in High Impact Areas under ANRF, R&D fund under RDI, etc.), can potentially be disbursed as a **1:1 match** for **private sector contribution²**, or through other financing mechanisms


- Explore tools such as **public procurement commitments** to support downstream-offtake of domestically developed tech
- Facilitate **public-private partnerships, joint R&D mechanisms**, etc. to **setup shared R&D labs**, accessible to start-ups
- Design **incentives/ mechanisms for shared use of private labs** while ensuring protection of intellectual property

(1) Broad component level breakup of investment can be found in the E-Mobility R&D Roadmap for India, linked below; (2) Total investment required for E-Mobility R&D INR 5,000-7,700 Cr (R&D infrastructure: INR 2,800-5,000 Cr; E-Mobility R&D grants: INR 1,000-1,200 Cr by Government along with INR 1,200-1,500 Cr by private sector);

Source: Academia and industry experts; Office of the Principal Scientific Adviser to GoI, [E-Mobility R&D Roadmap for India](#), 2024; RDI scheme: Research Development and Innovation (RDI) Scheme, 2025 [PIB report](#)

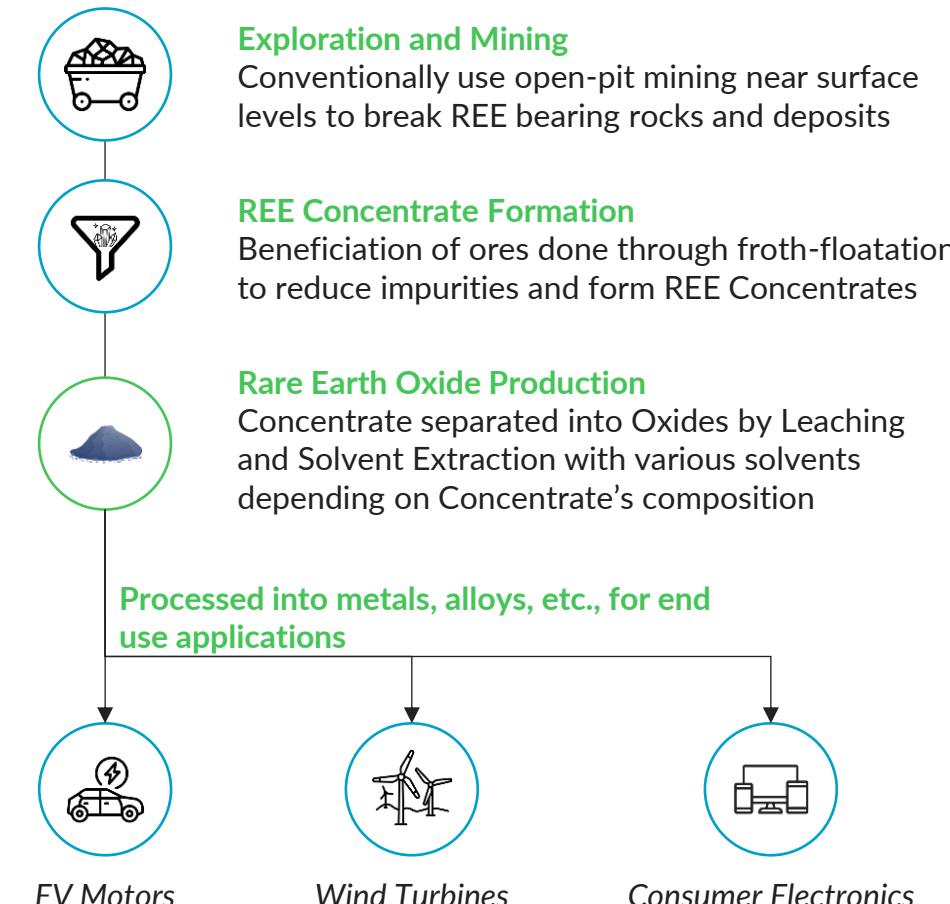
SUB-SECTION THREE

UPSTREAM RAW MATERIALS & CRITICAL INPUTS

Securing supply of and building domestic supply chains for Rare Earth Elements is critical to safeguarding national progress across key strategic sectors such as Cleantech, Space and Defence

Rare Earth Elements (REEs) are critical raw materials¹ for multiple sectors:

- REEs form key raw materials in **EV motors, Wind Turbine generators, Consumer electronics, space and defence sector**, spanning various applications – magnets, catalysts, phosphors, lasers, etc.


REEs are commonly traded as Rare Earth Oxides (REOs):

- REEs occur collectively in ores, but commonly traded as separated oxides (e.g., **Neodymium Oxide, Dysprosium Oxide**)
- Further processed into **metals or alloys** for use in **permanent magnets** (e.g., Neodymium-Iron-Boron magnets) – **key components in EV motors, Wind turbine generators**
- **Heavy REOs** are key materials in strategic sectors such (**space and defence**), occur less commonly than Light REOs

REO production is processing heavy:

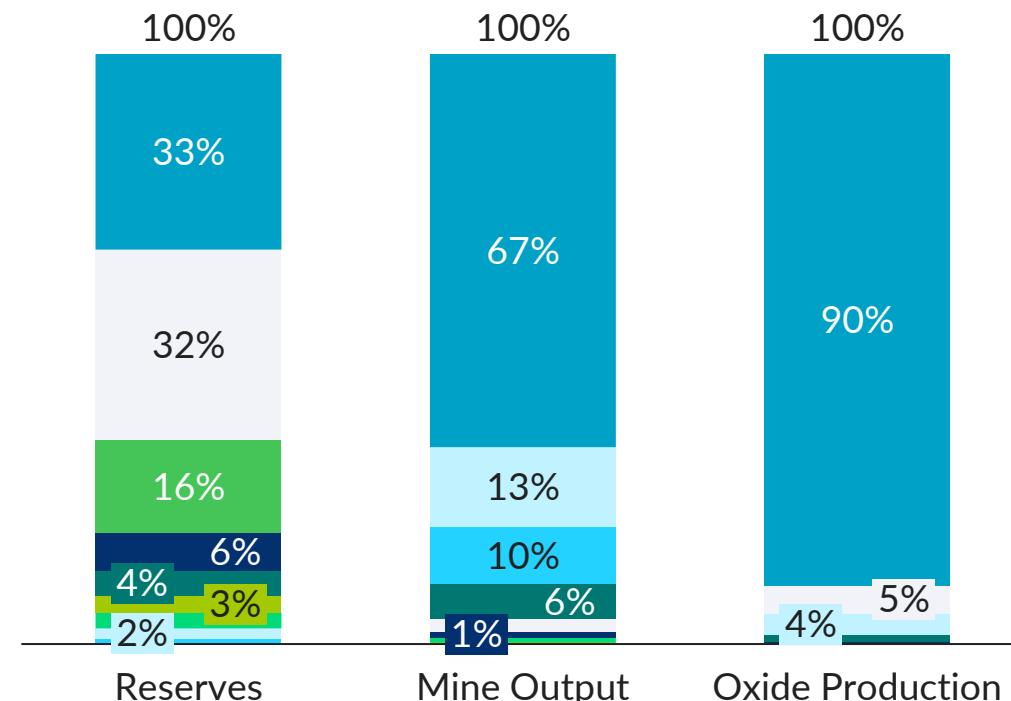
- REO production requires **cost and resource intensive hydrometallurgical processes** (leaching and solvent extraction) to convert feedstock (**Rare Earth Concentrate**) into separated Oxides

Rare Earth Oxide Value Chain

(1) Other critical raw materials for E-mobility include Silicon for semiconductors, which has been covered in the analysis on the Solar sector
Sources: MRS Bulletin, *Processing the ores of rare-earth elements*, 2022; JOM, *Material and energy requirement for Rare Earth production*, 2013

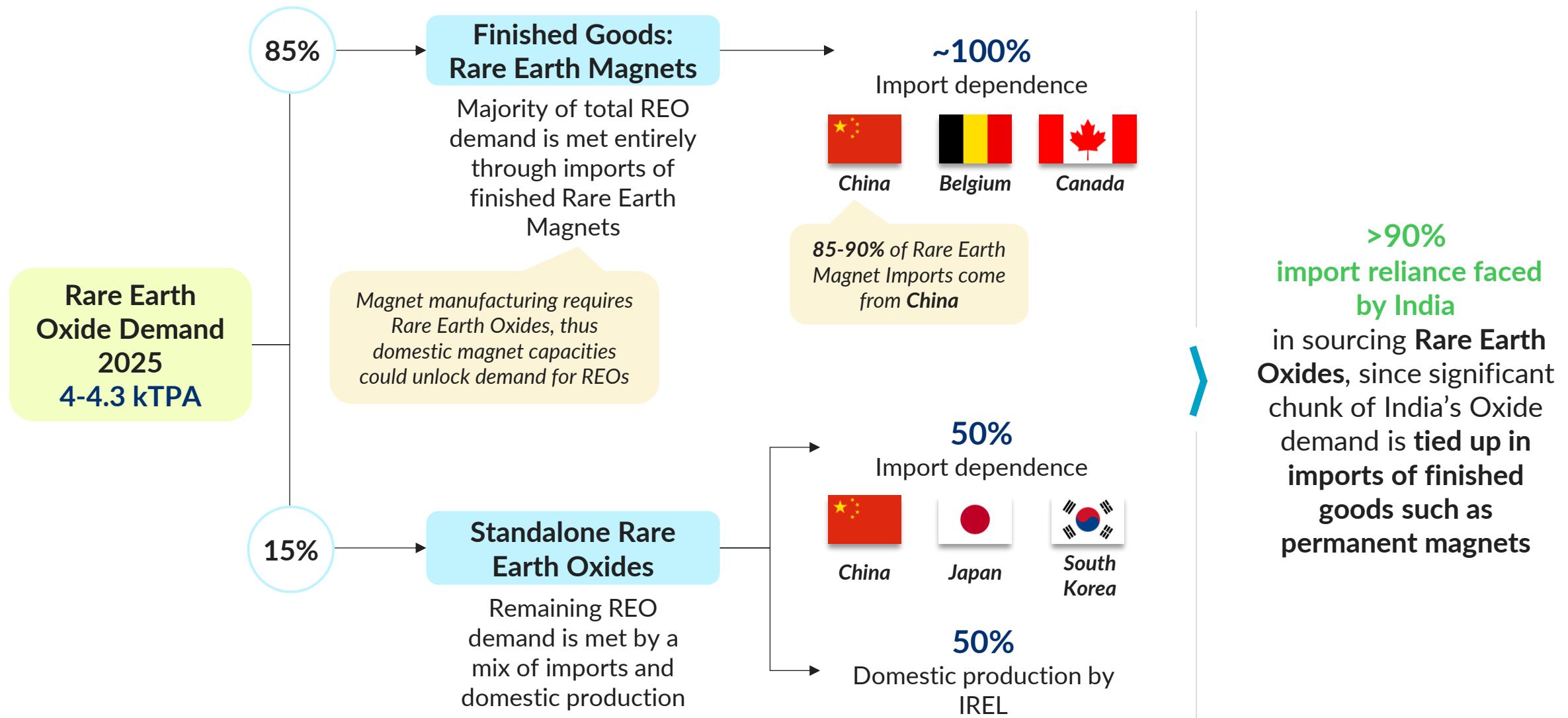
Today, global rare earth supply is concentrated in China, which controls 67% of Rare earth extraction and 90% of Oxide capacity globally

Global Rare Earth Supply is heavily concentrated in China with countries onshoring REO capacities to reduce dependency:


- China has ~33% of global Rare Earth reserves but accounts for 90% of Oxide production; dominance to continue as it safeguards supply and invests in new Heavy REO deposits in conflict regions such as North and East Myanmar
- US, Canada, Malaysia are emerging alternative Rare Earth Oxide suppliers investing in building and scaling oxide production capacity

Despite having significant domestic resources, India has shown limited success in mining them:

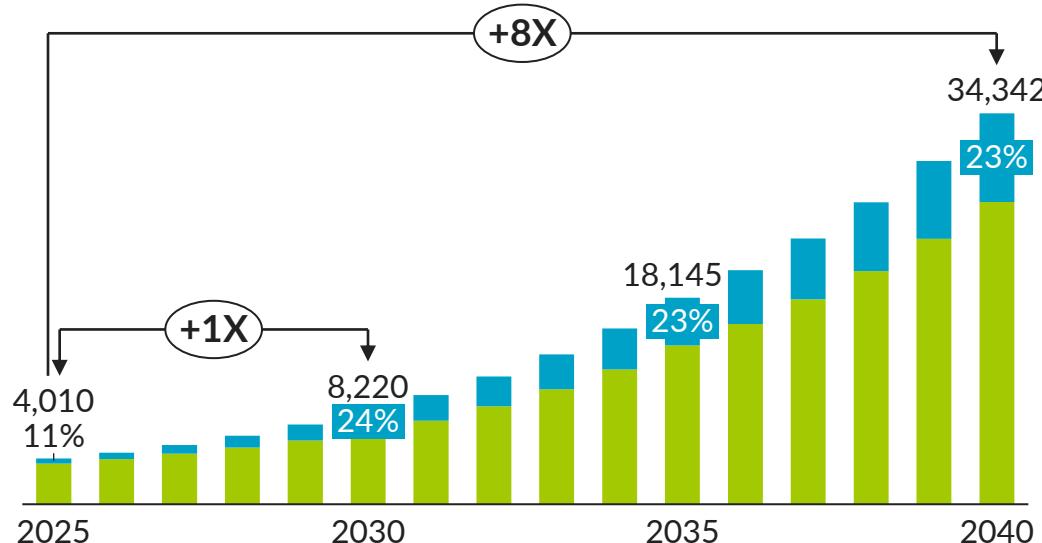
- India has the 3rd largest REE reserves (6% of global reserves) but contributes less than 1% to global production
- In FY 25, India imported ~2 kTPA REE Compounds including Oxides, and ~53 kTPA finished goods (magnets) – with respectively 60-70% and 85-90% of these imports coming from China


Distribution of global rare earths reserves and extraction capacity, % TPA REO equivalent

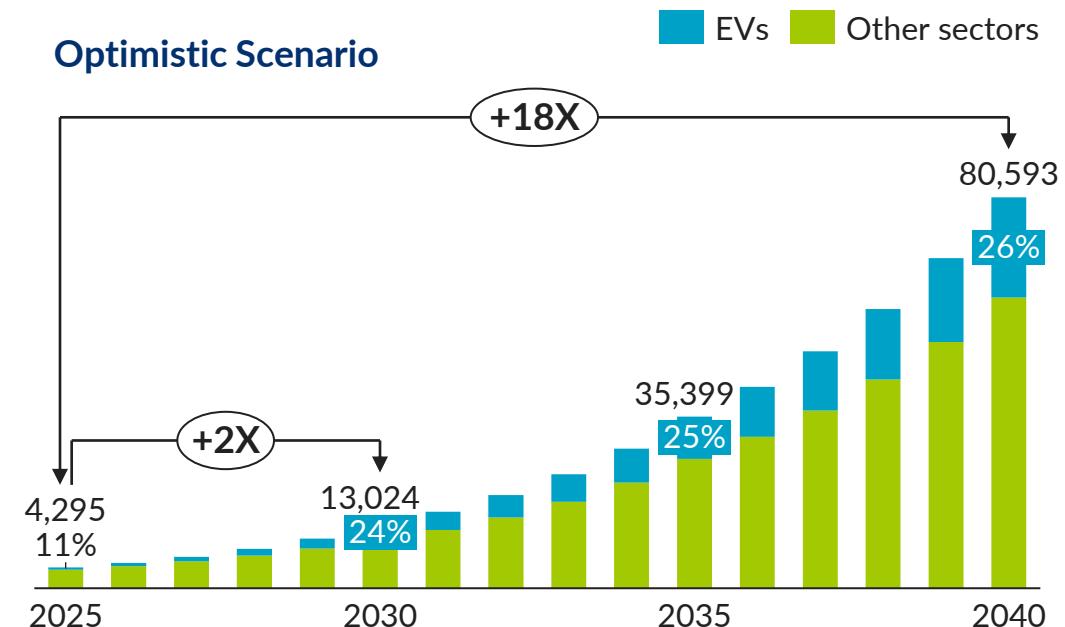
China	Russia	United States of America
Vietnam	India	Myanmar
Brazil	Australia	Rest of the World

Sources: Mining.com, [China flexes rare earth dominance with million-tonne discovery](#), 2025; ORF, [India's REE Strategy: Turning resources into capacity](#), 2025; USGS, [Mineral Commodity Survey – Rare Earths](#), 2025; Discovery Alert, [Myanmar's Critical Role in China's Rare Earth Dominance](#), 2025; Investing News Network, [Rare Earth Reserves](#), 2025; Reuters, [China backed militia secures control of new rare earth mines in Myanmar](#), 2025

Currently India has heavy import reliance across finished goods as well as standalone Rare Earth Oxides for use in applications such as EV motors, Wind turbine generators, consumer electronics, etc.



If existing import reliance is not checked, India's rising Rare Earth Oxide demand could risk further increasing import reliance for REOs


Annual Rare Earth demand expected to grow by 1-2X till 2030, 8-18X till 2040, compared to 2025, driven by rising EV penetration and policy tailwinds across other sectors such as offshore wind energy, consumer electronics and defense

India's aggregate¹ rare earth oxides demand, 2025-2040, TPA

Conservative Scenario

Optimistic Scenario

Continued **import dependence** for Rare Earth Oxides could result in **import bills** worth **USD 100-160 Mn** by 2030, (assuming 90% import reliance)

Across scenarios, **95% of EVs** are assumed to have **Rare Earth Oxide magnets** and **REO weight** is considered to be **30% of permanent magnet weight**

(1) Refers to total REO demand including demand represented by finished REO products (rare earth magnets) and REO itself. It is assumed that 15% of total annual EV demand will continue to be met by imports – REO demand for the same has been excluded from this assessment

Conservative Scenario: (1) In 2025, **EVs** assumed to account for **11% of total REO demand**; (2) By 2030, rising EV penetration expected to **more than double EVs' share** to **24%**;

(3) Beyond 2030, EV share anticipated to grow at a **deaccelerated pace** due to **expected growth in demand from other sectors** (e.g., Offshore Wind)

Optimistic Scenario: (1) **EV penetration** expected to **rise more aggressively** in the optimistic scenario, thus **increasing absolute REO demand from EVs**; (2) REO demand from **other sectors** expected to **rise proportionately to EVs** in the optimistic scenario due to **policy tailwinds** (e.g., VGF scheme for offshore Wind, National Manufacturing Mission to boost consumer electronics production, rising funding for defence sector); (3) Thus EVs' share in total REO demand in optimistic scenario **differs minimally** from conservative

India is already focusing on reducing import reliance by facilitating access to overseas Rare Earth mineral resources and incentivizing downstream demand but still faces challenges in catalysing domestic capacities

India is already doubling down on developing Rare Earth extraction and downstream magnet manufacturing...

KABIL exploring **G2G partnerships** with **Australia, Brazil and Dominican Republic** for overseas mining

IREL engaging **South Korea** and **Japan** to support technology transfer for and development of **domestic magnet capacity**

Ministry of Heavy Industries working on an **INR 7,350 Cr PLI scheme** to support development of domestic magnet manufacturing capacities

..but continues to face challenges in scaling domestic REO production and recovery capacity

Exploration and extraction projects have **long lead times** (7-10 years), resulting in delayed access to output and limited uptake by private players due to **extended ROI timeline**

While existing domestic capacity and reserves cover Light REO, India lacks **technical capacity** and **access to deposits** for **Heavy REO production** (critical for defence and space sectors)

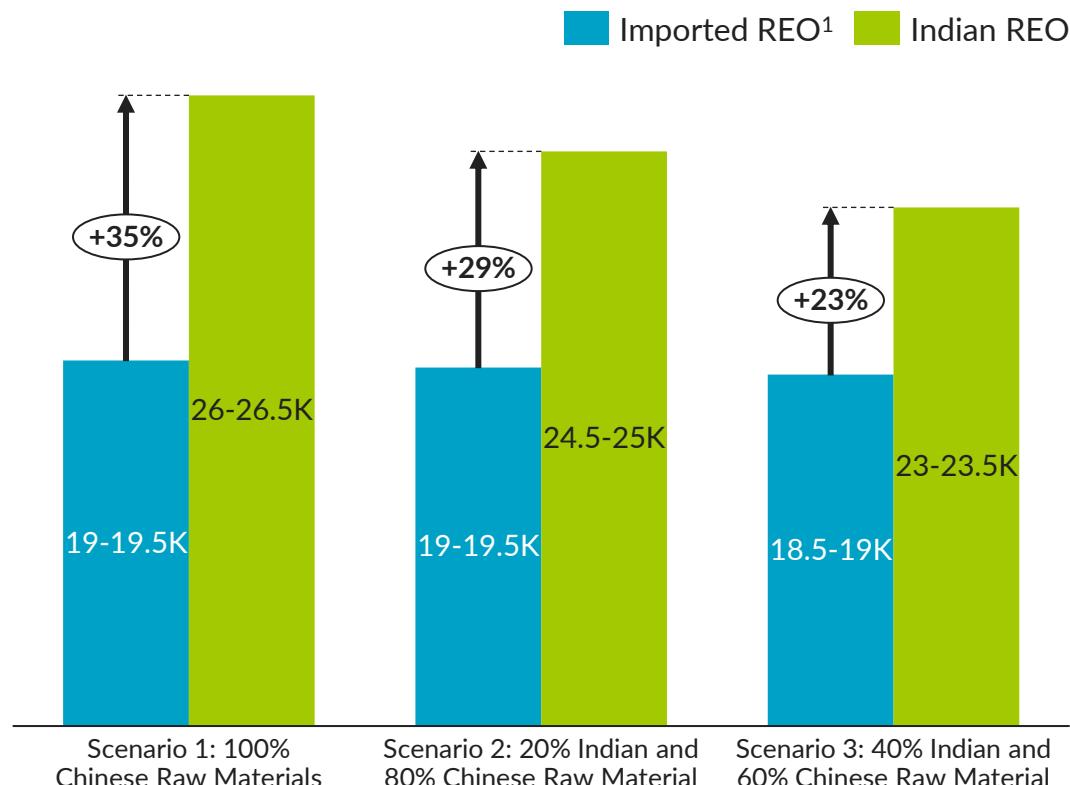
Amidst a growing mineral recycling ecosystem, India lacks **technical capacity** for **REO recovery** from end of life **Rare Earth magnet applications**

Reducing import reliance on REOs from 85-90% to 50% requires simultaneous efforts across domestic extraction and REO capacity development, and scaling magnet circularity to unlock and domestically meet aggregate demand

Investments in scaling domestic extraction and expanding refining and circularity capacity could support meeting up to 50% of India's total REO demand domestically, supported by key interventions taking place between 2025 and 2030

Pathways for reducing India's Rare Earth Elements import dependence

SOURCES OF MINERALS	Pathways	Details	2030 Potential	2040 Potential	Investment Required	KEY ENABLERS
			kTPA (% of aggregate demand)	kTPA (% of aggregate demand)	INR Cr by 2030	
	1 Domestic mineral refining	Global and domestic reserves extraction with domestic oxide production	Heavy REO: 0.47-0.7 ¹ , (50%), Light REO : 7.8-8.3 (61-65%) in conservative and 10.1-10.5 (50-52%) in optimistic demand scenario ^{1,2}		Heavy: INR 150-210 Cr Light: INR 570-640 Cr, INR 1,230-1,320 Cr (cumulative capex for incremental capacity ³)	<ul style="list-style-type: none"> G2G partnerships with Australia, Myanmar, Brazil for Light and Heavy REE Concentrate⁴ 20% upfront capex subsidies for incremental capacity - INR 130-140 Cr, INR 260-270 Cr⁵ Supporting development of downstream magnet capacity
	2 Scaling circularity	Closed loop permanent magnet recycling for REO recovery	REO recovery: 0.076, (~1%)	REO recovery: ~2, (2-6%)	INR 4,400-4,700 Cr (cumulative upfront capex for 6.5-7 kTPA magnet recycling capacity)	<ul style="list-style-type: none"> Tech transfer partnerships with prominent recyclers, e.g., Germany's Rocklink INR 780-840 Cr upfront capex subsidies for magnet recycling facilities for 2040 Collection infrastructure capacity expansion Policy support in setting up recycling infra.
	3 Import diversification & stockpiling	Stockpiling up to 25% of annual demand for REO	REO: 2-3.3, (25%)	REO: 8.6-20.2, (25%)	INR 5-10 Cr capex for developing storage facility	<ul style="list-style-type: none"> Stockpiling targets for 25% of annual demand by 2030 for Rare Earth Oxide forms of REEs


(1) Capacity requirement considers assumed utilization factors – 60% in both scenarios; (2) Considers total Light REO capacity including total 5.7-6.4 kTPA announced capacity;

(3) Refers to total investment required for additional REO capacity targeted beyond announced capacity; (4) Import and overseas mining partnerships under Domestic refining pathway focus on sourcing intermediate raw materials for safeguarding domestic production; (5) Range of capex subsidies across conservative and optimistic demand scenarios

Domestic Refining | Currently India's existing domestic REO capacity is not cost competitive with imported REOs and will require investments in improving feedstock availability to reduce the cost differential

Cost competitiveness of domestically produced REO with imported REO can be boosted by increasing local feedstock (Rare Earth Concentrate) availability, but would require additional interventions to equate it to cost of imported REO

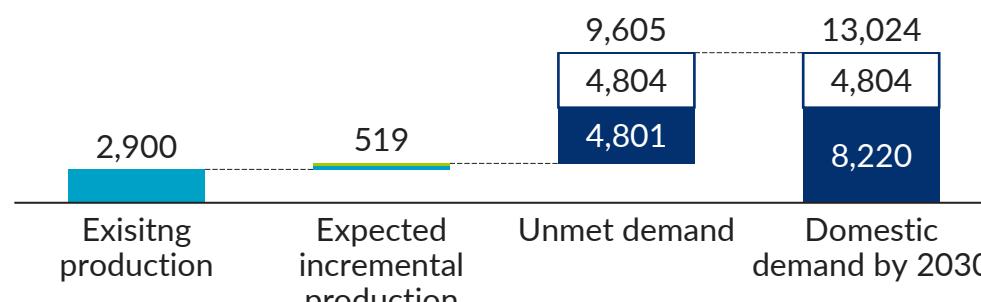
Comparison of landed cost of imported REO and cost of REO domestically produced, USD/MT, ex-GST

Domestic REO production is not cost competitive with imported REOs and is limited by feedstock availability:

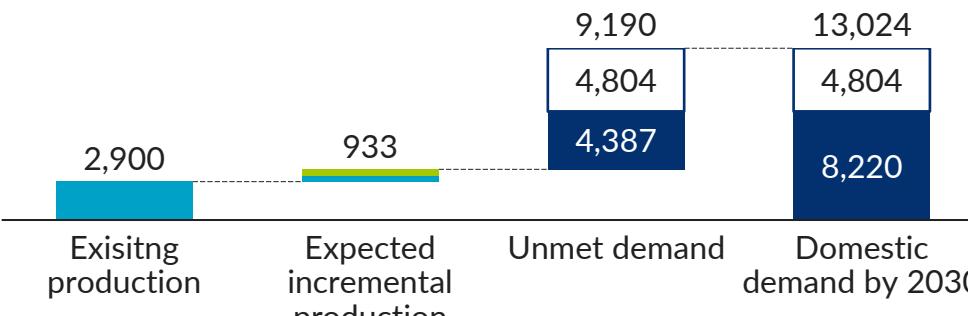
- 35% expected difference in cost of domestically produced REOs and imported REOs², due to dependence on imported raw material
- Up to 40% integration of domestic raw material can reduce the differential by 12%, but is limited by low feedstock (Rare Earth Concentrate) availability

Increasing feedstock availability will not be sufficient to address the cost differential and will require additional support:

- While incremental feedstock (Rare Earth Concentrate) capacity can bring down the cost differential between imported and domestically produced REOs, imported REOs will continue to be cheaper
- Targeted input side interventions such as electricity and capex subsidies, interest subvention and protective import duties are required to make domestic REO cost competitive


(1) The cost of Imported REO has been adjusted basis the composition of Rare Earth Oxide achieved by mixing Indian and imported Rare earth concentrates in different proportions; (2) Assuming domestic REO production is entirely import dependent for sourcing raw material – Rare Earth Concentrate; Source: Dalberg Analysis; JOM, [Material and energy requirement for Rare Earth production, 2013](#)

Domestic Refining | While IREL and GMDC have announced capacity expansion for REE mining and Light REO production, they're expected to meet 26-47% of REO demand¹, requiring incremental capacity additions


Expected domestic annual oxide production and total demand for Rare Earth Oxides by 2030, TPA

█ IREL █ Conservative Demand
█ GMDC █ Additional Optimistic Demand

Conservative Capacity Scenario

Optimistic Capacity Scenario

IREL and GMDC announced capacity expansion for Light REO by 2030²:

- IREL announced mining capacity expansion by 4x by 2032, targeting total 13 kTPA REO capacity by 2032 (~7.2 kTPA by 2030)
- Gujarat Mineral Development Corporation (GMDC), a mining PSU, announced development of 12 kTPA REO production capacity by 2028

Incremental capacity additions required to meet 50% aggregate demand domestically and build Heavy REO capacity:

- IREL and GMDC's capacity expansion primarily targeted at Light REOs and may be delayed – limited evidence of GMDC's progress on capacity development plans which were targeted for 2028

Scenario descriptions:

Conservative Capacity: Annual production to meet 26-42% demand in 2030

- IREL slated to meet only 13% of targeted incremental capacity at current pace of growth³; it is assumed GMDC could follow similar success (13% of targets)
- REO Capacity utilization by 2030 expected to be same as IREL's current Oxide capacity utilization, ~60%, due to limited mining output scale up

Optimistic Capacity: Annual production to meet 29-47% demand in 2030

- Assuming IREL and GMDC double the rate of capacity addition than the conservative scenario (meet 26% of capacity targets)
- REO Capacity utilization by 2030 assumed to remain constant at 60%

(1) Based on aggregate demand which excludes REO demand for 15% of annual EV registrations assuming they may continue to correspond to imported REO

components/imported finished vehicles; (2) Vedanta has displayed interest in REO production with Hindustan Zinc winning composite exploration and mining rights to an REE

block in 2025, but no capacity announced; (3) IREL needs 30% YoY growth in mine output (FY24-30), against current 5% YoY growth (FY21-24) to achieve their targeted mining capacity expansion; Sources: IREL Annual Reports; Economic Times, [Rare earths miner IREL eyes 40% capacity expansion for clean energy](#), 2023, GMDC, [Business Update](#), 2024

Domestic Refining | Incremental REO capacity additions to further reduce import reliance are limited by key challenges across exploration and extraction, private sector participation and reliable downstream demand

Limited domestic Rare Earth exploration and extraction

- Geological Survey of India augments **~480 Mn MT Rare Earth Ores** (varying in quality)
- These resources are **pending exploration** and are limited to **Light Rare Earth Oxides**
- Success of IREL and GMDC's capacity expansion and development plans is also contingent on successful **acquisition, exploration and commercialization** of **domestic Rare Earth Deposits**
- Further, limited feedstock availability results in underutilization of existing Oxide capacity – **~60% capacity utilization** of IREL's current REO plant

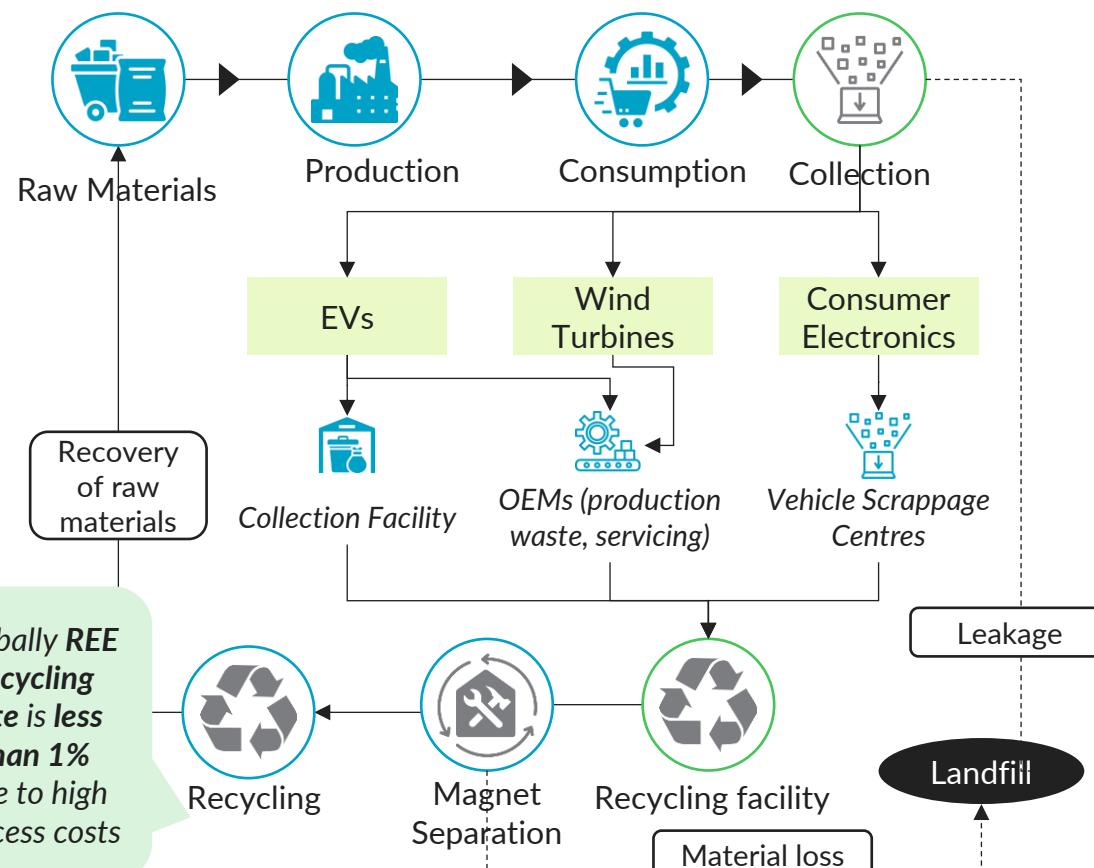
Regulatory challenges in gaining private sector support

- Limited private sector participation in domestic exploration :
 - Less attractive **revenue share norms** for exploration license (EL) holders, involving **long payment timelines** – Mining License holder to pay share of auction premium to EL holder, once Mining License auction concludes
 - **Limited access to financial support** offered by NMEDT – schemes typically available to Notified Private Exploration Agencies
- Regulatory challenges (e.g., obtaining **environmental and forest clearances**) add to compliance burden, disincentivizing mining agencies from investments in commercializing deposits

Low downstream demand from magnet manufacturing

- **Magnets** represent a large chunk of total REO demand but currently face **~100% import dependence**
- India's limited magnet manufacturing landscape does not provide **long term offtake security** for REO production plants – **limiting investments** in capacity development for **REO production**

Interventions targeted at scaling mineral extraction, incremental oxide production, reducing costs of domestic Rare Earth Oxides and securing downstream Oxide demand could unlock aggregate REO demand and reduce India's import reliance


	<i>Expanding exploration and extraction</i>	<i>Scaling mineral to Oxide capacity</i>	<i>Securing downstream demand</i>
Current progress	<ul style="list-style-type: none"> NMEDT funded reimbursement scheme to refund 50% exploration expenses¹ Fast-tracked approvals for critical mineral projects by Environment Ministry 	<ul style="list-style-type: none"> GMDC announced capacity development for 12kTPA Light REO capacity by 2028 IREL targets scaling existing 5kTPA REO capacity to 13 kTPA by 2032 	<ul style="list-style-type: none"> PLI scheme worth INR 7,350 Cr for domestic magnet manufacturing - expected to target 6,000 MT magnet capacity
Proposed interventions	<ul style="list-style-type: none"> Expedite exploration and composite license auctions for domestic REE blocks Secure access to Heavy Rare Earth Ores by exploring G2G partnerships with such as Myanmar, Australia 	<ul style="list-style-type: none"> Secure low-cost Rare Earth Concentrate to improve cost competitiveness in short term (Light REO: Australia, US, Brazil; Heavy REO: Australia, Myanmar) Facilitate tech transfers with key global refiners (e.g., Lynas) to support Heavy REO capacity development Support initial capacity development for Heavy and incremental for Light REOs through capex subsidies to build a strong REE processing portfolio for India 	<ul style="list-style-type: none"> Support REO off-take agreements with key magnet manufacturers Identify low-cost raw materials sources to support cost competitiveness of oxides and promote domestic offtake Offer idle PSU land sites to magnet manufacturers at subsidized rates
Potential	By 2030, 9-14 kTPA of REE concentrate annual production required to meet raw material demand for targeted domestic REO capacity	470-700 TPA Heavy REO capacity to meet 50% of 2030 annual Oxide demand, and 1,900-2,100 TPA incremental Light REO capacity in conservative and 4,100-4,400 TPA in optimistic demand scenario ²	1,800 TPA expected REO demand by 2030 from magnet capacity targeted under PLI
Cumulative investment required till 2030		<p>Conservative Scenario: INR 570-640 Cr for Light and INR 150 Cr for Heavy REO</p> <p>Optimistic Scenario: INR 1,230-1,320 Cr for Light and INR 210 Cr for Heavy REO capacity</p>	

(1) NMEDT funded scheme – allows for 50% reimbursement on expenses incurred in exploration, repayable upon mine commercialization; (2) Additional nameplate REO production capacity, beyond announced capacity. Targeted to meet at least 50% of 2030 demand domestically in both scenarios at 60% capacity utilization.; Sources: Business Standard, Govt to launch INR 7,350 cr plan to boost rare earth magnet production, 2024; Business Standard, Govt to launch INR 7,350 cr plan to boost rare earth magnet production, 2025

Circularity | Circularity for permanent magnet applications of Rare Earth Elements aligns with national focus on boosting REE recycling and has the potential to further reduce dependence on imported Rare Earth Oxides

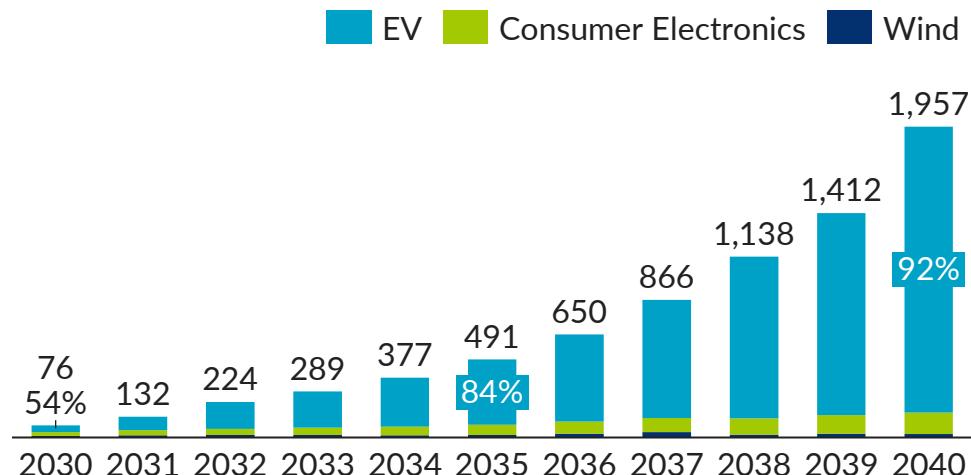
Rare Earth Elements have a variety of applications and circularity for permanent magnet applications displays strong potential, driven by existing policy focus and growing EV industry (serves as feedstock for magnet recycling)

Permanent magnet circularity value chain:

Permanent magnets display strong potential for Circularity:

- Permanent magnets are most common (25-30% of REE demand) amongst Rare Earth applications (magnets, catalysts, phosphors)
- Catalyst and phosphor recycling technologies have not yet been commercialized, thus have low potential for circularity

Permanent magnet recycling has an active research and policy landscape:

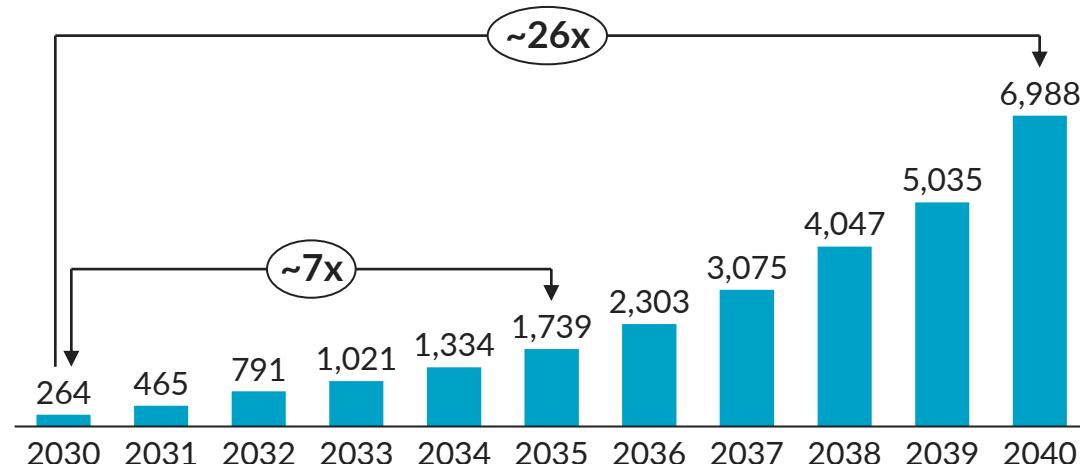

- Permanent magnet recycling currently dominated by **hydrometallurgical recycling – well documented** recycling process also used for Battery Black Mass recycling
- Emerging short loop magnet¹ recycling technologies** such as **Hydrogen Decrepitation**, though still **under development**, can recover Rare Earth powders for direct use in magnet production
- Rising domestic focus on Recycling – **INR 1,500 Cr incentive scheme** for critical mineral recycling, including **rare earths²**
- Increasing **EV penetration** expected to foster a **growing and reliable feedstock supply** for permanent magnet recyclers

(1) Refers to magnet to magnet recycling, which doesn't require separation of recycled material into oxides; (2) The scheme considers e-waste, Lithium Ion Battery scrap and other end of life scrap materials in vehicles such as catalytic converters; Source: TIME, [Trump wants Rare Earths but challenging China's dominance will take more than tariffs](#), 2025; PIB, [Cabinet approves INR 1,500 Cr scheme to promote critical mineral recycling](#), 2025

Circularity | Magnet circularity is a strategic long-term bet; targeted interventions across Magnet Collection and Recycling could meet 2-6% of aggregate rare earth demand by 2040, though the short term potential is low

Recovered Rare Earth Oxides from end-of-life permanent magnets could meet 2-6% of aggregate rare earth demand by 2040

Projected Rare Earth recovery potential, 2030-2040, TPA:



Recently approved INR 1,500 Cr incentive scheme for recycling is stepping stone to building domestic ecosystem:

- Incentives include **Capex subsidies of 20%** on plant and machinery associated with setting up recycling and mineral recovery capacities; **INR 5-10 Cr Opex subsidies**, on achievement of threshold sales

Tapping this potential needs strategic investments in developing 6.5-7 kTPA domestic magnet recycling capacity

Projected Magnet recycling capacity requirement, 2030-2040, TPA:

Opportunity to tap into active momentum in magnet recycling landscape:

- Magnet recycling is **underexplored** in India, with existing rare earth recycling capacity largely focused on **consumer electronics** (e.g., Attero, Recyclekaro)
- Domestic recyclers are beginning to engage in **tech transfers** for **magnet recycling capacity** – BatX engaged with German recycler Rocklink

Circularity | Tech transfer partnerships, cumulative INR 4,400-4,700 Cr capex investment in recycling facilities and other policy levers could catalyse circularity potential of ~2 kTPA recovered Rare Earth Oxides by 2040

India's magnet circularity potential is impeded by structural and regulatory challenges, requiring investments targeted at scaling collection infrastructure and supporting economic sustainability and ease of operations for recycling facilities

COLLECTION		RECYCLING	
Challenges	<p>Insufficient Infrastructure</p> <ul style="list-style-type: none"> • Limited E-waste collection centers and Vehicle Scrappage Facilities • 174 registered vehicle scrappage units present against estimated need of 550-750 centers by 2025 and 700-950 by 2030 	<p>Low Economic Feasibility</p> <ul style="list-style-type: none"> • Recycled REO not competitive with virgin REO production • Fluctuating mineral prices add uncertainty to economic feasibility • Higher working capital needed to manage inconsistency in feedstock expected in the near term¹ 	<p>Limited Capacity</p> <ul style="list-style-type: none"> • Limited domestic focus on magnet recycling as a source of REO recovery
Cumulative Investment till 2030	<p>INR 14,200-16,500 Cr capex investment⁴ across e-waste and vehicle scrappage facilities</p>		<p>Interventions</p> <ul style="list-style-type: none"> • Explore Price Guarantee Measures to boost economic sustainability for recyclers • Explore 2-year GST deferrals on feedstock (permanent magnet scrap/end-of-life motors) • Facilitate access to magnet scrap from EU/US – regions with higher EV scrap availability
	<p>INR 4,400-4,700 Cr capex investment for magnet recycling facilities</p>		<ul style="list-style-type: none"> • Support development of 6.5-7 kTPA magnet recycling facilities via 20% capex subsidies • Leverage platforms such as EU-India Trade and Tech Council to access existing and new recycling tech

(1) This is since key magnet-based industries (EVs, Wind turbines) are nascent sectors in India, resulting in low volumes of waste reaching end of life by 2030; (2) As detailed in the Battery indigenisation pathways; (3) Exception approvals granted by relevant ministry for 1 year, post which due processes on audits and diligence can be carried out to grant permanent certificates; (4) Includes INR 1,200-1,500 Cr capex investment proposed under the Batteries Indigenisation Pathways presentation

3 Import diversification and Stockpiling | Leveraging existing MoUs with resource rich nations and stockpiling 25% of 2030 notional REO demand could safeguard India's downstream sectors from global REE supply shocks

As India looks to reduce import dependence, it's imperative to parallelly diversify supply for remaining Rare Earth imports and additionally invest in stockpiling of REOs to safeguard growth of downstream sectors – e.g., Permanent Magnets, EVs

Strategic imports of Rare Earth Concentrates and Oxides could support development of domestic Oxide and Magnet Capacity:

- Low-cost **Rare Earth Concentrate imports** critical to **support cost-competitiveness** and initial **sustainability** for oxide capacity
- Domestic Heavy REO production is dependent on **imports of Heavy REE rich concentrates** due to lack of domestic availability

India could leverage existing bilateral ties and multilateral ties and partner with key resource rich countries to secure these resources:

- Brazil, Australia, US, Myanmar, Vietnam – key REE rich nations
 - Brazil and Australia represent **20% of global REE reserves**
 - Myanmar's heavy REE rich reserves form ~90% of China's heavy REE imports
 - US, Myanmar and Australia hold **29% of global mine output**
 - Vietnam – emerging RE source targeting **60 kTPA REO capacity by 2030**

• **Existing bilateral and multilateral relations:**

- Opportunity to leverage the **Critical Minerals Investment Partnership with Australia**, and **Quad Critical Minerals Initiative**
- India already exploring REE partnerships with **Brazil, Dominican Republic**

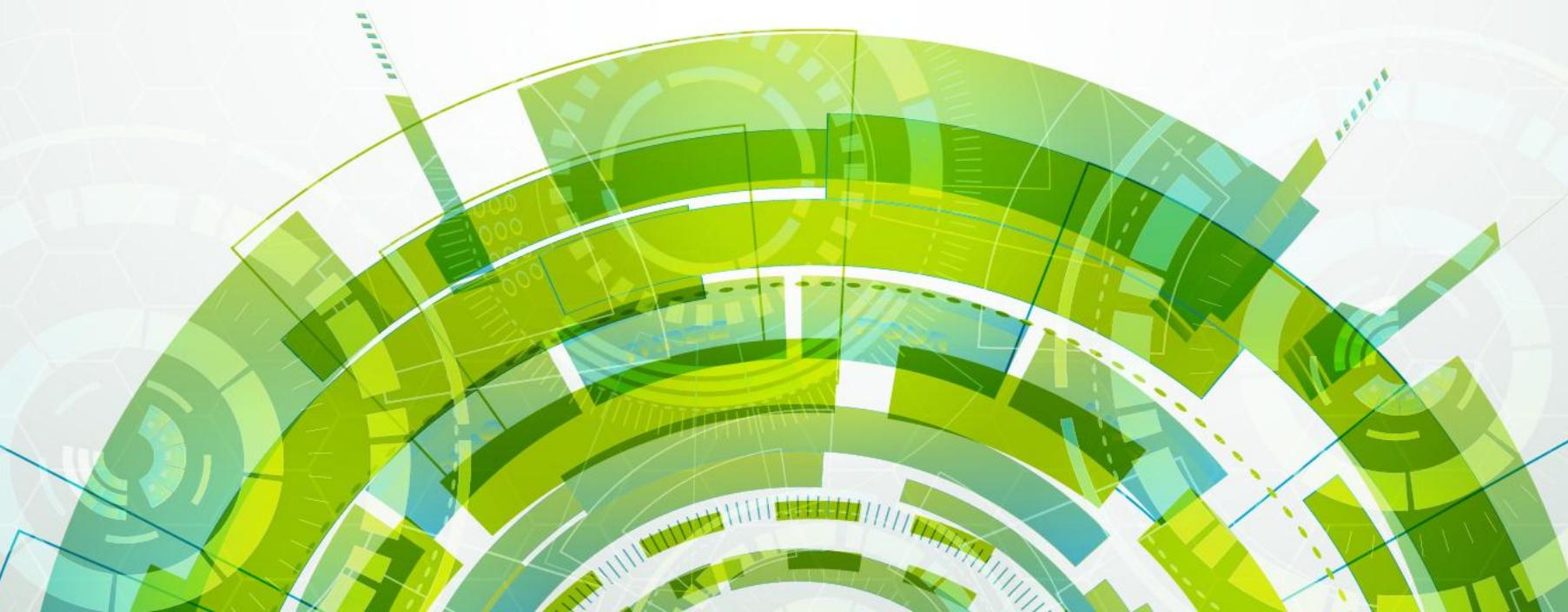
In tandem, Stockpiling could supplement import diversification to safeguard domestic manufacturers from global supply risks

- Stockpiling could ensure **continued access to minerals** and protect domestic manufacturers against **global price fluctuations**
- **Focus** stockpiling efforts on **Rare Earth Oxides** – more **stable** forms of elements, serve as **raw materials for multiple applications**, and have a **longer shelf life** increasing the timeline for inventory refreshment
- Establish stockpiling targets - 25% of 2030 demand (2-3.3 kTPA)
- **INR 5-10 Cr capex** investment required for development of **Rare Earth storage facilities**¹

Leverage either of 2 existing models for stockpiling:

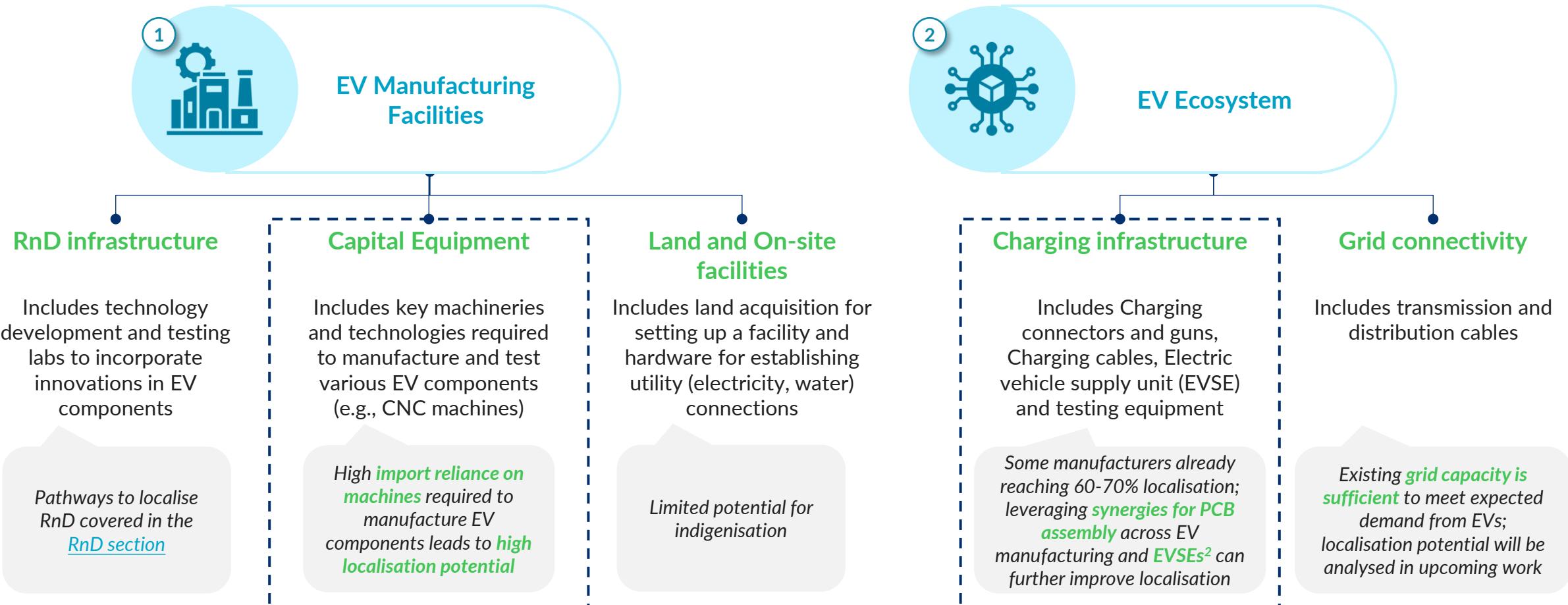
Public-sector led

ISPRIL (India) - PSU-led acquisition of oil resources, government funded storage infrastructure that can be leased to private sector


Public-private

JOGMEC (Japan) - Government mineral stockpile mandate for private sector, supported by interest subvention for private sector

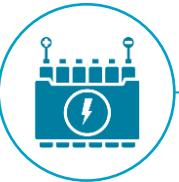
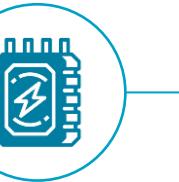
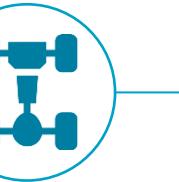
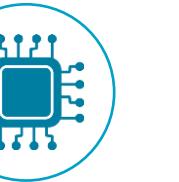
(1) Calculated assuming rare earth storage facility costs could reach around 1-2% of the budget allocated for stockpiling under NCMM, given the low volume of Rare Earth Stockpile requirement; Sources: The Hindu, [Initial findings positive for lithium blocks in Argentina](#), 2025; Reuters, [Indian state firm's seek stake in SQM's Lithium projects in Australia](#), 2025; Rare Earth Exchanges, [Vietnam's Rare Earth Awakening](#), 2025


SUB-SECTION FOUR

CAPITAL EQUIPMENT & INFRASTRUCTURE

Capex and Infrastructure includes various dimensions in the E - mobility ecosystem and amongst them, Capital Equipment and Charging Infrastructure could be prime entry points to focus EV localisation efforts

Manufacturing Facilities and the larger EV ecosystem are 2 key tenets of capex and infrastructure for E-mobility





Financing requirement¹⁸

Developing and scaling EV manufacturing facilities requires investments into RnD equipment and labs, plant and machinery as well as working capital

(1) Detailed in the [Financing section](#); (2) EVSE: Electric Vehicle Supply Equipment

Capital Equipment | Current levels of localisation across manufacturing of EV components is as low as 35%; significant opportunity exists across EV components to boost localisation via targeted interventions

Battery pack and power electronics are critical components to increase DVA, owing to their contribution to the BOM

Key components						
BOM Split	35-40%	5-10%	5-15%	10-20%	15-25%	10-15%
Current component DVA²	10-20%	30-40%	30-40%	40-50%	80-90%	40-50%
Potential for incremental component level DVA by 2030	25-35% <i>unlock</i> via domestic pack assembly, sub-components level manufacturing – insulation, casings, etc.	30-35% <i>unlock</i> via PCB Assembly, software development	10-15% <i>unlock</i> via domestic stator, rotor manufacturing ³ and motor assembly	5-10% <i>unlock</i> via domestic electronics, interconnects manufacturing and PCB assembly	<i>Excluded from current analysis as significant existing levels of localisation</i>	
Critical dependencies	CAM, AAM precursor materials	Semiconductor chips for integrated circuits	REO magnets, specialized steel	Semiconductors for inverters, DC convertors, testing infrastructure	Testing infrastructure and semiconductors	

(1) Battery Pack exclusive of Battery Management System (BMS); (2) localisation could vary between vehicle segments, for our analysis we have considered overall localisation across segments; (3) While domestic capacity focuses on stator and motor manufacturing, magnet production can be scaled simultaneously – as mentioned in the Upstream section; Sources: Praxis Global Alliance. [Driving self-reliance – localising EV components in India](#). 2025; EV Reporter. [Magazine](#). 2025; Expert consultations

Capital Equipment | Power electronics, Motors and BMS along with Batteries are key components to prioritize localisation efforts and achieve 50% DVA¹, due to alignment with other industries and significant export potential

COMPONENT	POTENTIAL SYNERGIES	KEY UNLOCKS ⁴
 Power Electronics	<p>Sub component manufacturing and PCB Assembly</p> <ul style="list-style-type: none"> PCB assembly is a critical capacity across consumer electronics, automation, defence sectors Opportunity to leverage ongoing policy momentum to scale domestic capacity <ul style="list-style-type: none"> Electronics Components Manufacturing Scheme, focusing on manufacturing of passive hardware components (sensors, connectors) India Semiconductor Mission focusing on local fabrication, assembly, testing capacities Domestic Power electronics market could have INR 10K-12K Cr export potential by 2030 	<p>Short term</p> <p>PCB Assembly</p> <p>Manufacturing for Onboard chargers, DC-DC convertors, etc. via Sensors, connectors and semiconductor manufacturing</p>
 Motors	<p>Stator and component manufacturing, motor assembly</p> <ul style="list-style-type: none"> Potential to leverage non-permanent magnet, motor manufacturing capacities to localise non-magnet components (stator, rotor and magnet housings – form ~55% of motor's BOM) Domestic Motor manufacturing market could have INR 7.5K-9K Cr export potential by 2030 	<p>Motor Assembly</p> <p>using emerging specialized winding techniques (e.g., Hairpin Winding)</p> <p>Stator, rotor, magnet housing manufacturing</p>
 Battery Management Systems (BMS)	<p>Software development and PCB Assembly</p> <ul style="list-style-type: none"> Existing policy support (PCB assembly), and domestic software development capacity (India accounted for ~20% of APAC software market² in 2024), can be leveraged to localise BMS Domestic BMS market could have INR 2.5K-3K Cr export potential by 2030 	<p>Software Development and PCB Assembly</p> <p>PCB components and semiconductor manufacturing</p>
 Battery Pack	<p>Pack assembly, sub-component level manufacturing for insulation, casings, etc.</p> <ul style="list-style-type: none"> Efforts to localise battery packs already running in parallel - existing policies (Advanced Chemistry Cell PLI and PM e-Drive schemes) driving localisation Additional targeted incentives, policy support could improve DVA at cell and electrode levels³ <p>PARALLEL FOCUS</p>	<p>Electrode Manufacturing, Cell Formation and Assembly³</p>

(1) 50% DVA across the EV value chain; (2) Asia Pacific software market exclusive of Japan and China; (3) Further detailed in the Battery Indigenisation Pathways; (4) Prioritized based on synergies with existing manufacturing capacities and expert consultations. "Short term" refers to prioritized unlocks till 2030 and "Long term" refers to time period after 2030; Source: IDC, [India Software Market to hit USD 18.4 Bn by end of 2025](#), 2025

Capital Equipment | However, capital equipment for these key components faces significant import reliance on prominent suppliers of these machines – China, Japan, South Korea, etc.

High import reliance for capital equipment required across EV components

Component	Import Reliance ¹	Key Machines that are import dependent
Power Electronics	70-80%	Machines used in PCB assembly - Surface Mount Technology (SMT) Pick and Place machines, Power Module Die Bonder, Sinter Bonder
Motors	~60%	Rotor Magnet Insertion and Embedding machines, Rotor Balancing machines, and Coil Winding machines in line with emerging techniques (e.g., Hair-pin winding)
Battery Management System (BMS)	70-80%	BMS testing equipment and machines used in PCB assembly
Battery Pack	70-80%	Machines across CAM processing and Electrode formation – Coating machine, Calendering machine, Electrolyte filling machine, etc.

While existing policy focuses on boosting domestic manufacturing of capital equipment, focus on localisation for EV sector is limited

- Scheme for Promotion of Manufacturing of Electronic Components and Semiconductors also supports manufacturing for capital equipment and precision tools but focuses only on passive electronic components (sensors, connectors, etc.)
- Union Budget 2025-26 proposed exempting Battery manufacturing machines, from BCD² – disincentivizing localisation of capital equipment

As a result, there's high capital equipment import reliance in EV manufacturing

- 60-80% machines are imported across the EV value chain, with major import dependence across Battery pack and Power electronics manufacturing – key components for localisation
- Potential for synergies with existing machine technologies being manufactured locally, however, modifications are required to enable use in EV component manufacturing (e.g., Solder Paste Printing machines, Rotor balancing machines)

These capital equipment imports are mostly concentrated in Asian and European countries

- China, Japan and South Korea are prominent leaders in SMT machine manufacturing – key equipment for developing power electronics
- Germany, in addition to key Asian players, has strong capacities in Motor manufacturing equipment

Charging Infrastructure | Similarly, EV charging infrastructure has made strides in localisation but import reliance expected to continue in the short term, along capital equipment import reliance driven by need for PCB assembly

While charging ecosystem already claims high localisation, there is a more urgent need to scale infrastructure to meet growing EV demand

Existing policy focus on localisation of charging infrastructure has proven to be successful

- EV Public Charging station deployments under the **PM e-Drive** and **FAME II Scheme** are subject to **Phased Manufacturing Programme** guidelines to support localised assembly and machining
- As a result, some domestic charging infrastructure manufacturers are already reporting **60-70% localisation**

However, additional localisation of charging infrastructure is limited by the urgent need to scale infrastructure – resulting in expected high import reliance in the short term

- Currently, **domestic charging infrastructure manufacturing** (especially across charging guns and EVSEs¹) is at a **nascent scale**, and developing cost-competitive manufacturing capacities could require **long timelines**
- **Rapid scale-up** required in charging infrastructure to support greater EV penetration – could result in **high import reliance** in the short term – India EV charger market **import shipments** grew by **~23%** between 2020 and 2024
- Thus, **localisation** of the entire charging infrastructure ecosystem could prove to be **strategically difficult** in the **short term**

PCB Assembly for EVSEs¹ is a key opportunity to improve localisation in EV charging

However, EVSEs could offer an opportunity to further improve localisation without hindering infrastructure scale-up

- **PCB assembly** is a prime opportunity to improve localisation for EVSEs
- Localising PCB assembly can drive **synergies** between manufacturing for **EV components** (BMS, Power electronics), **EV Charging infrastructure** and **other electronics sectors**
- However, targeted interventions are needed to reduce **70-80% import reliance** for **capital equipment** (SMT²) relevant to **PCB assembly**

As the charging ecosystem scales, localisation for other components could rise

- localisation for other charging infrastructure components such as **Charging guns, connectors** and **cables** can be improved through targeted interventions in the **long term**

Capital Equipment | INR 9,000-16,000 Cr investment in building domestic capacity for key machines used across these components can reduce import reliance and support achieving 50% DVA across EV value chain

Building domestic manufacturing for key capital equipment and importing other critical machines are 2 pathways that can be leveraged to source key capital machinery for domestic EV component and charging infrastructure production

Pathway criteria

Pathway unlocks

% Expected Capex contribution

1

Domestic manufacturing for select EV equipment with existing industry synergies

Synergies with other sectors

Tech expertise

Pathway unlocks

% Expected Capex contribution

Synergies with other sectors

Tech expertise

Pathway unlocks

% Expected Capex contribution

2

Import highly specialized, advanced EV capital equipment with no industry synergy

High

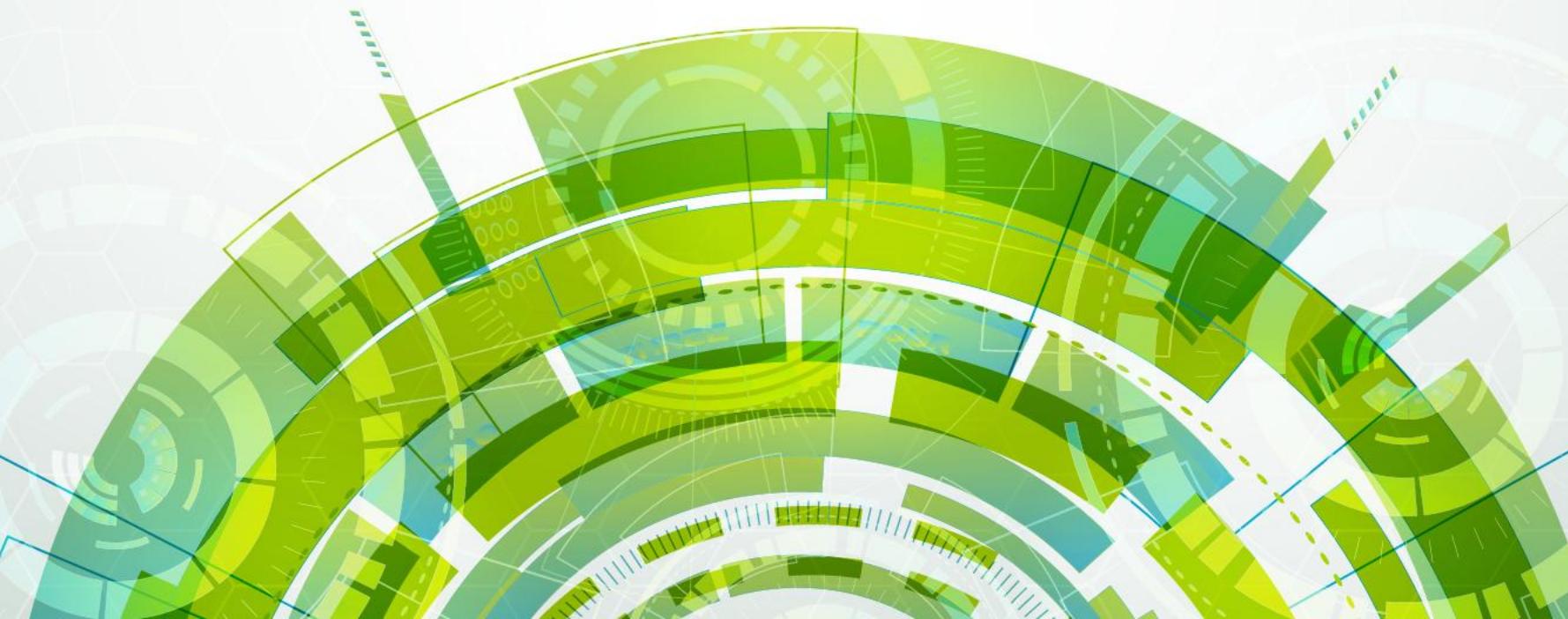
Medium

Low

No synergies in specialized EV-centric equipment, e.g., precision machining for thermal management systems

Emerging semiconductor fabrication (e.g., GaN⁵ Semiconductors), coil winding tech (Hairpin winding) - led by Taiwan and South Korea, nascent in India

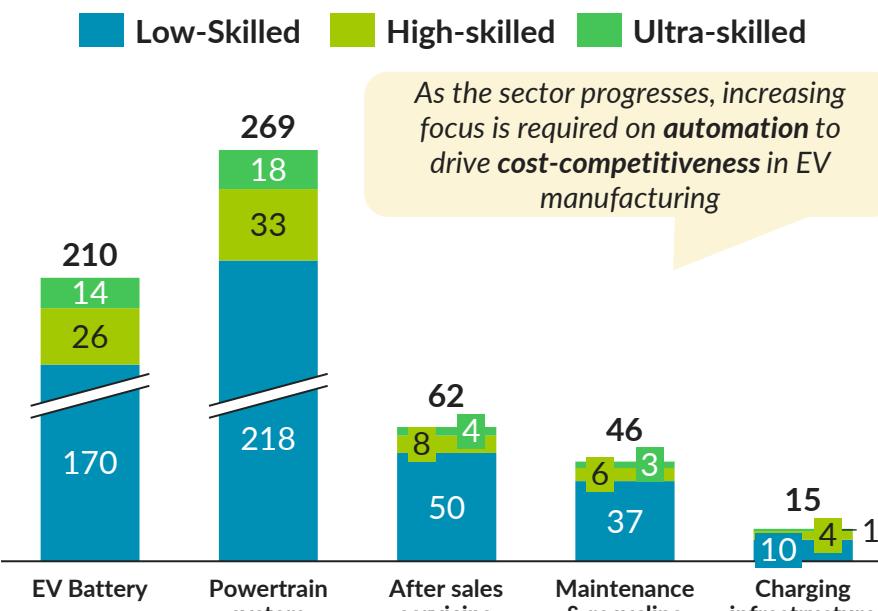
- Develop G2G partnerships to secure continued access to key machines (e.g., Germany, Taiwan, South Korea - have existing equipment manufacturing capacity)
- Explore sourcing models such as equipment leasing systems and centrally operated pay-per-use facilities - reducing cost of and improving access to key machines

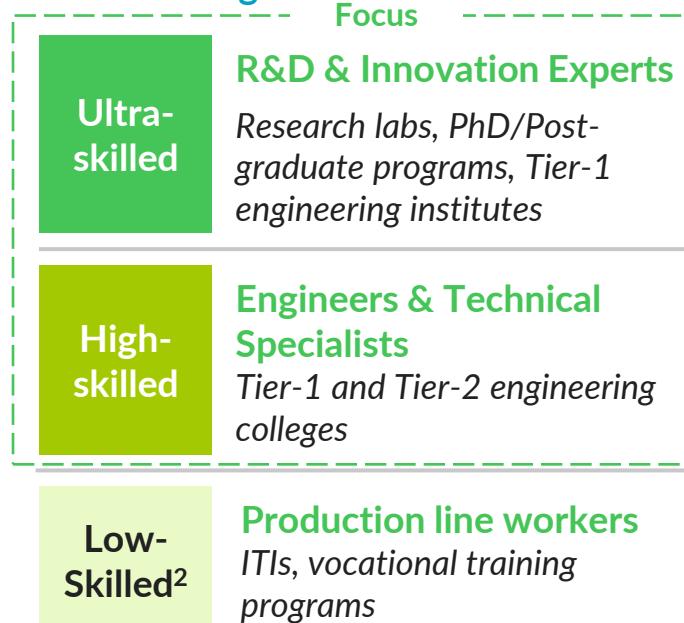

- 45-50% across PCB assembly for Power electronics, BMS and EVSEs (~30%), and Motors (~80%) - e.g., Rotor Magnet Insertion and SMT Solder Paste Printing Machines

Development of these domestic manufacturing capacities would require cumulative INR 9,000-16,000 Cr investment till 2030, supported by targeted subsidies (Refer to Financing Section for details)

(1) Surface Mount Technology; (2) Printed Circuit Board; (3) Electric Vehicle Supply Equipment (4) Brush-less Dynamic Current Motors; (5) Gallium Nitride

SUB-SECTION FIVE


TALENT & WORKFORCE


India would require at least ~6 lakh additional ultra, high, and low-skilled workers¹ across EV manufacturing value chain by 2030

India would need ~25K permanent EV ready talent per year across Ultra, High and Low Skilled workforce by 2030 to achieve >50% indigenisation targets; separately 2/3rds of total workforce would be comprised of temporary low skilled workers

Projected (2030) additional workforce requirement for EV manufacturing value chain, in '000 workers

Skill levels and sources of talent for EV manufacturing

Industry insights

EV Battery:

- Significant need of technicians for assembly/testing and engineers for electrochemistry & thermal management

Powertrain:

- Requires mix of technicians for build and engineers for motor/inverter design
- Regen braking: Primarily engineer-heavy with skills focused on electronics and integration

Maintenance & recycling

- Primarily requires technicians for dismantling, engineers for recovery, plus ultra skills for circular systems.

Total training cost³

INR 4,300-7,900 Cr

Total demo facility investment⁴

INR 3,000-5,000 Cr

Total budget

INR 7,300-12,900 Cr

Includes 1,000 ITI upgradation expenses

(1) Includes both direct and indirect workers; (2) Low skill workers includes temporary/contract workers; (3) Training cost for additional workers required across skill levels; (4) R&D and demonstration facilities across ITIs and top 100 engineering institutes
Source: SIAM, EV Talent Landscape in India: Bridging the Skill Gap for 2030, 2025; Industry experts (industry associations, key manufacturing players), Dalberg analysis

Nearly a third of the talent gap for EV would have a high overlap with ICE competencies & skills and therefore, won't require either fresh hiring or re-skilling and can be supplemented with on the job training/shadowing

Roles with partial skill overlap with ICE vehicle skills can be addressed through reskilling using virtual instructors and simulations, while roles with minimal overlap and will require fresh skilling programs and certifications

Area	Functional Focus	Overlap with ICE/other industries		
		High overlap	Medium overlap	Some overlap
Battery	Software – Design, product assembly and end of line, testing and validation	Only BMS, HV validation have no ICE equivalent.		
	Mechanical design, process setup, simulation, integration, certification & sourcing	Some overlap with ICE in mechanical design and testing, but BMS integration and HV compliance are new.		
	Cell assessment, systems & product selection, mechanical- product development, electrical simulation, electrical design, BMS hardware	New competencies in cell chemistry and battery control electronics.		
Powertrain System	Powertrain mechanics, quality control & testing	Significant overlap with ICE (gear machining, assembly, QC).		
	Systems design	Overlaps in drivetrain layout, but EV motor–inverter design is new.		
	Power train electricals, power electronics, thermal design	Power electronics and HV thermal mgmt are new vs ICE.		
Regenerative Braking	Drivetrain design	Overlap with ICE drivetrains, but energy recovery integration is new.		
	Vehicle dynamics modeling, direct drive applications	EV torque-vectoring/direct drive systems have little ICE precedent.		
	Power electronics	No direct ICE analogue; requires new skills.		
After-sales Servicing	Servicing – mechanics, quality & inspection, testing and validation	Strong overlap with ICE workshops; EV adds HV safety.		
	Servicing – electricals, battery safety, operating digital interfaces	ICE experience in diagnostics overlaps partly; EV battery safety is new.		
Maintenance & Recycling	Product assembly and end of line, mechanical – simulation	Overlap with ICE dismantling/testing, but HV/materials recovery new.		
	Product management	General mgmt skills overlap, but EV lifecycle planning is distinct.		
	Diagnostic battery management, electrical simulation	No ICE equivalent; unique to EVs.		

Source: SIAM, EV Talent Landscape in India: Bridging the Skill Gap for 2030, 2025; Industry experts (industry associations, key manufacturing players), Dalberg analysis

Compared to EV manufacturing, charging infrastructure has far fewer overlaps with ICE, making the ecosystem far more dependent on fresh skilling.

While civil works, wiring, basic O&M skills can be adapted from existing trades, the majority will require fresh skilling in power electronics, grid integration, and compliance

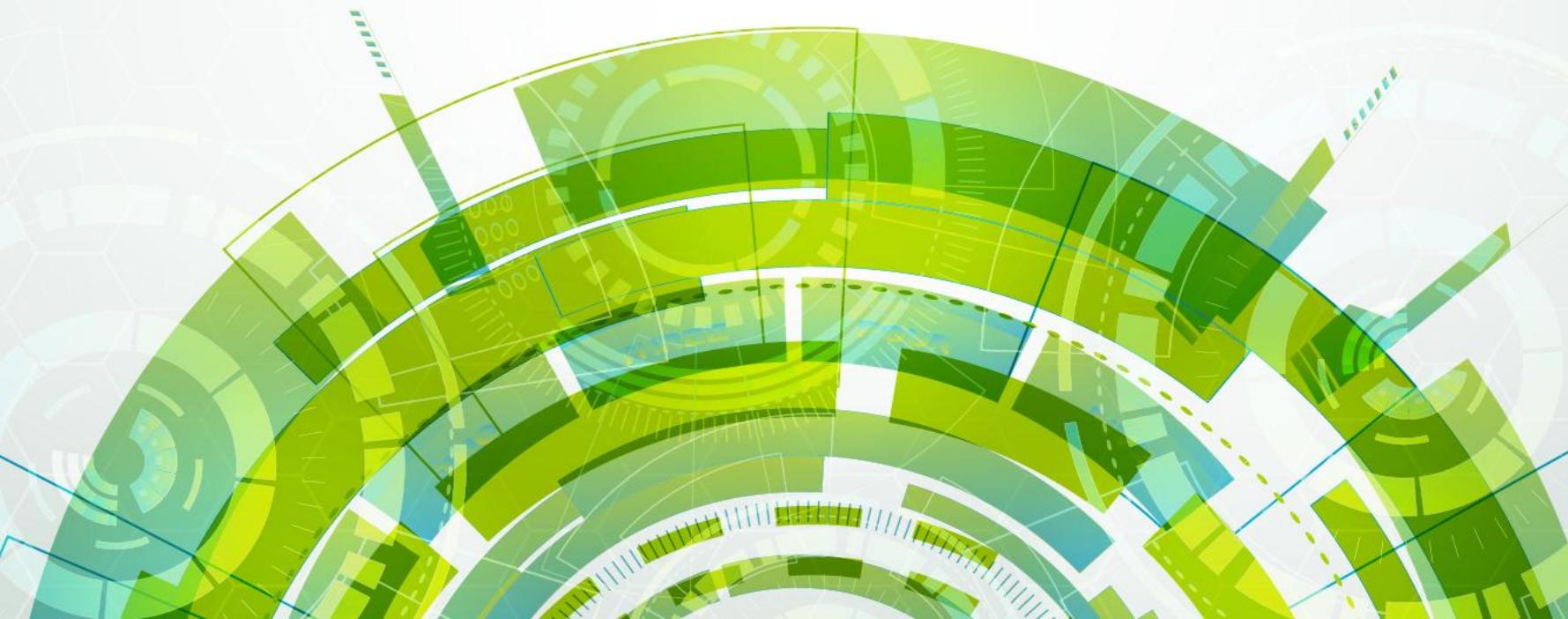
 High overlap Medium overlap Some overlap

Area	Functional Focus	Overlap with ICE
Manufacturing & Assembly	Cabinet fabrication, connectors, enclosures; integration of power modules	Mechanical fabrication overlaps with ICE suppliers, but EVSE-specific power electronics and safety standards are new.
Installation & Commissioning	Civil works, site prep, electrical wiring, meter integration, utility interfacing	Civil/electrical work overlaps with ICE infra projects, but HV-DC wiring and smart metering are new.
Operations & Maintenance (O&M)	Preventive maintenance, field servicing, remote monitoring, firmware updates	Basic O&M overlaps with ICE fueling infra; EVSE diagnostics and digital monitoring are new.
Testing & Certification	Safety compliance, EMI/EMC, interoperability testing, calibration	ICE has emissions/mechanical testing, but EVSE requires new standards for interoperability and electrical safety.
Program & Ecosystem Management	Grid integration, load balancing, planning, policy & regulatory management	Minimal ICE precedent; EV requires new skills in power systems, regulation, and utility coordination.

Action would be required across four critical levers to successfully build this workforce: reducing foreign trainer dependency, standardizing course design, improving employability and securing financing

LEVERS	CURRENT STATUS	APPLICABILITY	RECOMMENDATIONS
Trainers	Limited pool of EV-ready trainers; some pilots (like DGT-Shell) are creating a nucleus of master trainers.		<p>Applicability: Ultra-skilled High-skilled Low-skilled</p> <ul style="list-style-type: none"> Build 'Train the Trainer' pipelines with tiered specialization (technician, engineer, ultra-skill profiles) supported by standardized toolkits and regular industry immersion programs with OEMs (Tata, Mahindra, Ola Electric) and Tier-1 suppliers (Bosch, Continental)
Course Design	Initial EV modules (90-240h) exist in ITIs/ASDC curricula, but often lack depth and alignment with industry standards	 	<ul style="list-style-type: none"> Develop modular, stackable skilling pathways – short-term certifications for technicians, diplomas for engineers, and advanced Master's programs for ultra-specialists in batteries, power electronics, and recycling Setting up R&D infrastructure, live demo plants and access to industry R&D facilities for engineering students Embed hands-on labs/demo facilities within curricula and align programs with ASDC/NSDC frameworks for national recognition and portability. Upgrade training labs and existing course structures (at undergraduate and graduate levels) to align with latest industry developments
Employability	Placement linkages remain weak; many trained candidates are not absorbed due to skill mismatches.	 	<ul style="list-style-type: none"> Live internships and on-the-job training through jointly funded industry-government partnerships Link skilling to apprenticeships and placement pipelines, ensuring job-readiness through mandatory industry-based assessments.
Finance	Disaggregated investment in manufacturing skills – either directly at ITI level or manufacturer-led on-the-job training	 	<ul style="list-style-type: none"> Invest INR 6,500-11,500 Cr for training programs and demonstration facilities and R&D labs across skill levels through innovative financing instruments (e.g., skill bonds) Catalyze private sector investments in skilling, CSR and private foundation funding for ultra-skilled talent development and ITI investments

(1) As per recommendations for R&D infrastructure upgrade in R&D section, leveraging the upgraded infrastructure for training is imperative

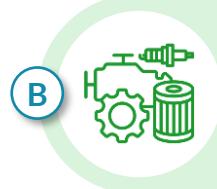

Source: Industry experts (industry associations, key manufacturing players)

Skill level	Recommendations	Responsible Ministry/Agency
Ultra-Skilled	<ul style="list-style-type: none"> Develop 'Train the Trainer'¹ program to train 200–300 trainers/academicians from top 100 engineering colleges with help global trainers via G2G partnerships and create domestic Centres of Excellence in batteries, power electronics, and recycling Develop Quality Improvement Programs on similar lines to facilitate industry aligned skill development for teachers and trainers at Tier 2 and Tier 3 institutes Attract EV experts from the Global OEMs (EU, Korea, Japan, China) to train academicians and professors at Tier 1 Engineering colleges (top 25-30) Launch dedicated master's programs that blend technical skills with policy & regulatory skilling (safety, interoperability, grid integration)in tier 1 Engineering colleges Develop jointly funded industry-government on-the-job training initiatives with global exposure to retain talent in India 	Ministry of Education, Ministry of Skill Development and Entrepreneurship (MSDE), Directorate General of Training (DGT) MSDE, Ministry of Education Ministry of Education Ministry of Education, DGT
High-Skilled	<ul style="list-style-type: none"> Introduce 6-month certification courses or 1-year function specific courses (BMS, motor design, powertrain testing), backed by simulation-heavy learning (digital twins, HIL rigs) and joint faculty–industry projects Strengthen industry-academia by co-delivery of cleantech manufacturing modules, and internships at manufacturing plants for engineering students 	Ministry of Education Ministry of Education
Low-skilled	<ul style="list-style-type: none"> Develop standardized qualification packs and courses (HV-safe technician, battery service associate) that reflect a superset of competency requirements defined by private sector manufacturers Develop targeted reskilling modules to transition workers from adjacent industries – e.g., automobile mechanics for EV servicing and powertrain assembly, electronics technicians for battery pack assembly and BMS, and chemical/process engineers for cathode/anode material manufacturing 	National Council for Vocational Education and Training, DGT, Skill Council for Green Jobs, Electronics Sector Skills Council of India NCVET, DGT, SCGJ, ESSCI, ITIs

(1) The "Train and Trainer" program is applicable to the high-skilled workforce as well

SUB-SECTION SIX

FINANCING & TAXATION


INR 228.6-302.6 K Cr would be required during 2025-30 to achieve 50% indigenisation across the EV value chain, build a cohesive R&D ecosystem and train the required workforce

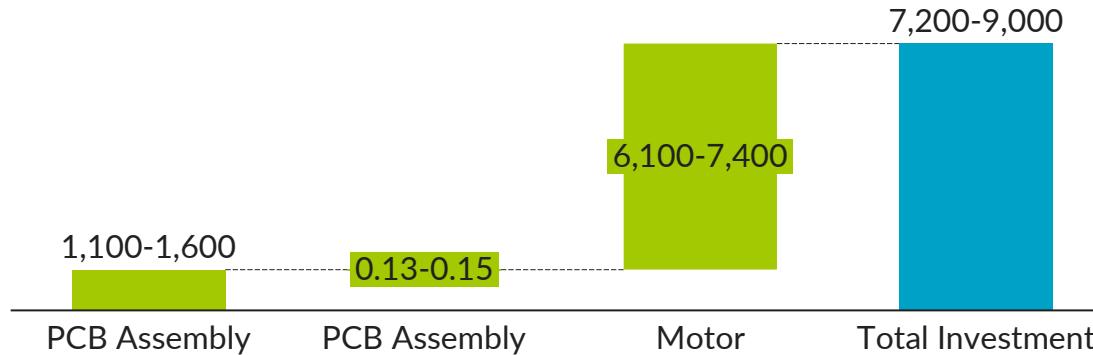
Government funding of INR 71.4-75.4K Cr would be required across demand acceleration, R&D, workforce skilling and subsidies on electricity, capex and interest by 2030 to achieve these goals

Theme	Total Funding Required (INR Cr)	Government Funding Required (INR Cr)	Key Activities	Potential outcomes
Demand & Market Architecture ¹	45,500-46,200	40,600-41,200	Subsidies for E4Ws, E-buses and E-trucks segment to drive further adoption and improving the business case of charging stations for CPOs	Additional 5 Mn E4Ws, 65,000 E-buses, 27,000 E-trucks and 8.7 lakh charging points by 2030
R&D & Product Innovation	5,000-7,700	2,250-3,450	4-6 R&D development and 2 testing labs for EV Component level R&D; INR 1,000-1,200 funding for project grants	Indigenous development of EV Component technologies; accelerated adoption of early-stage innovative global technologies
Upstream Raw Materials & Critical Inputs	5,200-6,200	900-1,100	Input subsidies on capex for domestic Rare Earth Oxide production capacity; investment in magnet recycling facilities to support circularity	Reduce import dependency on refined Rare Earth Oxides; meet Oxide demand through recycled Permanent magnets
Capital Equipment & Infrastructure	165,600-230,000	~24,600	<ul style="list-style-type: none"> A Indigenous production of up to 50% equipment for Power electronics, Motors, BMS and EVSEs²; B Capex & interest support across component & charger manufacturing, & vehicle assembly C Structural modifications to Auto PLI³ 	<ul style="list-style-type: none"> Reduce import dependence for equipment where feasible; drive accelerated EV capacity expansion Improved manufacturing capacity and efficiency, potentially leading to higher localisation for EVs Enabling greater access to, and utilization of PLI
Talent & Workforce	7,300-12,900	3,000-5,000	Training additional 6 Lakh ultra, high, and low skilled workers across the EV value chain and setting up demo training and R&D facilities	Ensuring a stable supply of workers, reducing attrition and lowering training costs for manufacturers
TOTAL	228,600-302,600	71,400-75,400		Detailed ahead

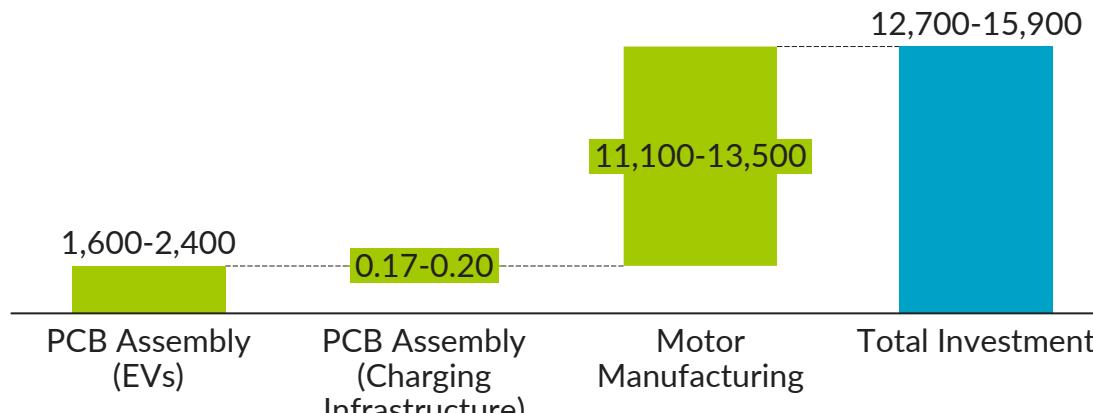
(1) Includes ~INR 31,700 Cr available undisbursed funds under PM E-DRIVE and PM E-bus Sewa to drive EV adoption across vehicle segments; (2) Investment estimations for this intervention have been covered in the Financing section; (3) Auto and Auto Components PLI

Three key questions were explored withing Financing for capex and infrastructure:

A What is the capex investment needed to scale local capital equipment manufacturing?


B What is the total capex and working capital needed to scale local EV component manufacturing ecosystem?

C How can existing financing support mechanisms (commonly PLIs) be made more effective in supporting local EV component manufacturing?


Capital Equipment & Infrastructure | Development of local capital equipment manufacturing facilities requires additional Capex subsidies of INR 1,800-2,250 Cr in Conservative and INR 3,175-3,975 Cr in Optimistic scenario

Cumulative investment required to develop capital equipment capacity to support 50% localisation across EV ecosystem, INR Cr¹

Conservative Scenario²

Optimistic Scenario²

Key Insights:

- Scaling capital equipment availability for **PCB Assembly** can **unlock localisation across multiple sectors** – building the **foundation for** backward integration into **PCB manufacturing**
- Some players already claim **60-70% localisation** on **charging infrastructure**, and **PCB Assembly** for **EVSE's** could further improve localisation

Key machines to indigenise³:

- PCB Assembly:** Reflow Oven, Loading and Unloading, Solder Paste Printing and Wave Soldering Machines
- Motor Manufacturing:** Rotor Magnet Insertion and Rotor Balancing Machines

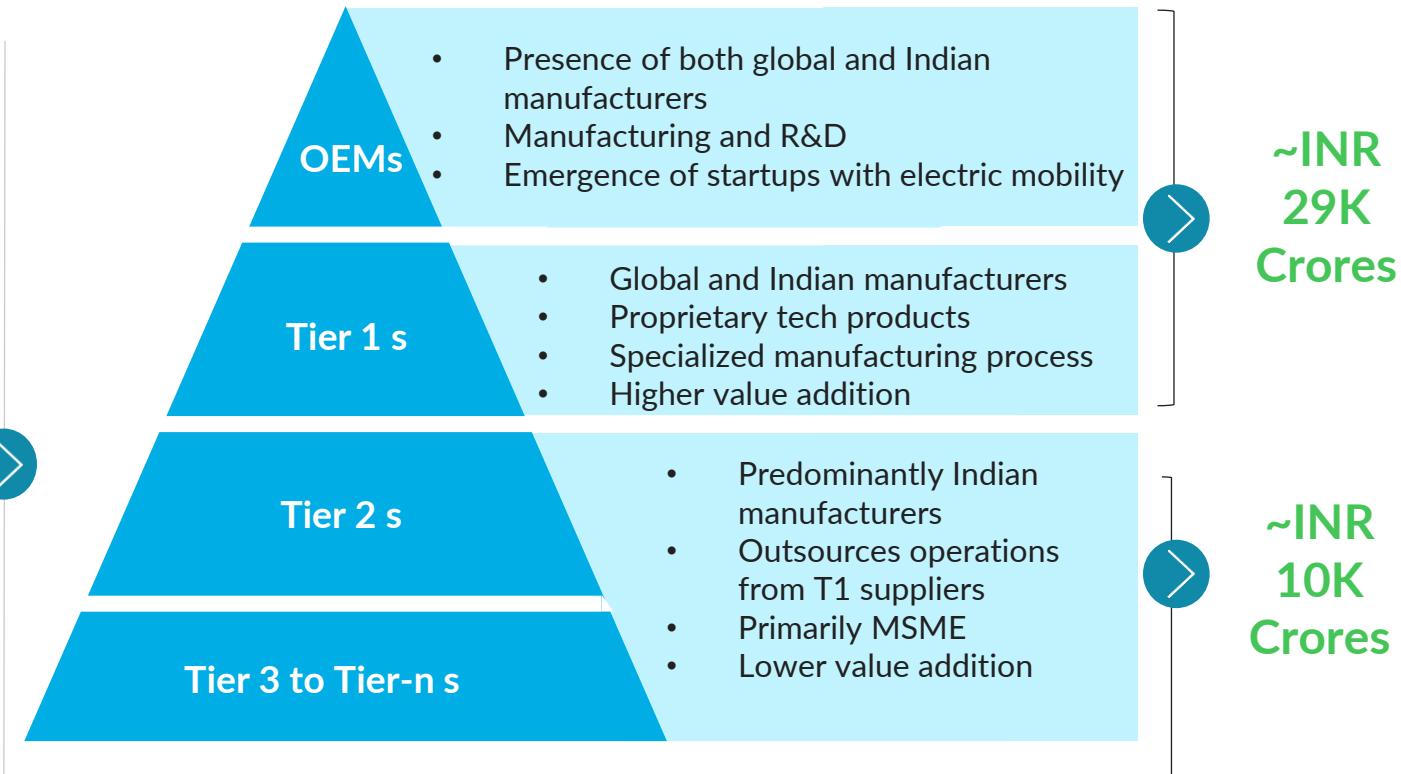
Total investment required:

Conservative Scenario:
INR 8,100-10,100 Cr
Optimistic Scenario:
INR 14,200-17,800 Cr

Subsidy required @ 25%⁴:

Conservative Scenario:
INR 1,800-2,250 Cr
Optimistic Scenario:
INR 3,175-3,975 Cr

(1) Investment limited to capital equipment for EV sector; (2) Scenarios in line with the scenarios used to forecast annual EV registrations – detailed in Demand Acceleration section; (3) Machines with synergies with other industries are considered. Investment for PCB Assembly excludes Pick and Place, and Automated Optical Inspection machines, and Investment for Motor Manufacturing excludes CNC Machines and Coil Winding Machines; (4) Similar subsidies of 25% exist under [Scheme for Promotion of Manufacturing of Electronic Components and Semiconductors \(SPECs\)](#) for power electronics and PCBs. This recommendation aims to ensure these benefits cascade to the EV sector.


Capital Equipment & Infrastructure | Financing EV manufacturing ecosystem is expected to require ~INR 156.7-213.8K crore till 2030 across OEMs and auto component manufacturers, partially covering interest costs

INR 124-164K Cr capex investment and INR 12-18K Cr government support required for EV ecosystem by 2030

	Investment required (INR crore)	Subsidy Support ¹ (INR crore)
Component manufacturing		
BMS & other systems	~5.6K	~0.5K
Motors	~9K	~0.8K
Power electronics	~11.2K	~1K
Working capital needs	~18K	-
OEM-led Vehicle assembly	26-63.7K	2.3-5.7K
Charging infrastructure manufacturing²	40.6-52.2K	0.7K
Other ecosystem investments³		3.7-13.6
TOTAL	124-163.5K	~12.4-18.2K

Additionally, government led concessional finance of **INR 5.8-9 K Cr** can be provided to support EV ecosystem manufacturers cover interest costs of **INR 29.2-44.9K Cr³**

Financing requirements for component manufacturing will vary significantly between OEMs and auto-component manufacturers

The expected component manufacturing capex investment is expected to increase to **INR 55K crores** by 2035, of which **INR 14K crores** will be needed for the MSME segment

(1) Capex subsidies calculated at a 20% rate, similar to existing government schemes; (2) Subsidy support for charging infrastructure estimated is above and beyond INR 4,000 Cr specified as a demand intervention, and is required only in optimistic scenario; (3) Available budget under the Auto and Auto Component PLI that is expected to be required in the ecosystem; (4) Interest costs assume 11% interest rate, 70% Debt component and a 7 year loan tenure for capex financing. 20% of these costs are expected to be met via the government led concessional debt; Source: CPI, [Roadmap for an Automotive Component Technology Upgradation Facility](#), 2025

Capital Equipment & Infrastructure | However, MSMEs face heightened challenges when compared to OEMs & Tier 1s, especially for financing, compliance pressures and in terms of the institutional structures

While the financing needs for Large OEMs and T1s are large, they can tap into greater sources of finance owing to stronger balance sheets, targeted PLI schemes etc. however, MSMEs face greater critical challenges including -

Financial & Market Access Challenges

- Restricted access to formal credit:** Banks demand consistent profitability, and clean credit records. Lack of collateral further blocks credit access for newer/smaller MSMEs
- Bias in equity investment:** PE/VC models favor scalable, late-stage, high-growth companies. Early-stage MSMEs capture just 1% of investment value, making it difficult to raise funds at critical growth phases.

Cost & Compliance Pressures

- Prohibitive capital costs for modernization:** Transitioning to EV components requires heavy investment in advanced R&D facilities and specialized machinery, much of which must be imported
- High overheads limit efficiency:** Complex compliance and credit access challenges generate significant administrative costs. These overheads consume scarce managerial bandwidth and slow MSMEs' ability to focus on growth and competitiveness.

Ecosystem Weaknesses

- Underinvestment in innovation:** Only 22% of total investment (USD 162 million) is allocated to R&D and NPD. Capital flows are directed toward scaling operations rather than supporting innovation.
- Weak ecosystem integration:** Fragmented supply chains and limited coordination among suppliers, financiers, and technology providers reduce economies of scale and slow modernization.

Capital Equipment & Infrastructure | Ensuring financing availability for MSMEs across EV tech development lifecycle will be critical especially with acute capital shortages during prototype and early commercialization

TRL Band	Typical Funding Now Available	Core Financing Gaps / Barriers	% of total investment needed
TRL 1–3 Idea to lab proof	<ul style="list-style-type: none"> DST, CSIR, academic grants Startup India Seed Fund NIDHI-PRAYAS micro-grants Founder capital 	<ul style="list-style-type: none"> Non-academic founders struggle to access public R&D pools Almost no angel/VC appetite for pre-prototype hardware Grants (₹10–20 lakh) cover only a fraction of lab & test-rig costs 	<p>~15%</p> <p>Small capital per project but many ideas. High technical risk; relies on grants/seed funding</p>
TRL 4–6 Prototype to pilot in a relevant environment	<ul style="list-style-type: none"> DST EVolutionS grants (up to ₹50 lakh) Technology Development Board's soft loans Limited angel / climate-tech seed funds 	<ul style="list-style-type: none"> Prototyping, tooling & certification need ₹1–5 crore Public support capped, equity investors still see high-tech market risk Bank credit unavailable without collateral or revenues 	<p>~35%</p> <p>Costs jump ~10x vs. lab stage; Government/targeted funds crucial to de-risk this stage</p>
TRL 7–9 Pilot plant to commercial scale	<ul style="list-style-type: none"> Series A/B venture equity & venture debt- Bank/SIDBI loans; credit-guarantee schemes (CGTMSE, CGSS) Central/state capex subsidies; Auto & ACC-Battery PLIs 	<ul style="list-style-type: none"> Capex of ₹50–200 crore exceeds most MSME balance sheets PLI eligibility (₹500 crore revenue / ₹150 crore assets) sidelines MSMEs Working-capital crunch as OEM payment cycles stretch Banks remain risk-averse despite guarantees 	<p>~50%</p> <p>Dominates funding needs due to heavy capex. Lower tech risk but still financing hurdles (banks reluctant without de-risking). Largest share ensures MSMEs can build production capacity by 2030.</p> <p>Chronically underserved</p>

Capital Equipment & Infrastructure | A mix of funding instruments will be necessary for MSMEs to meet 50% localisation targets and maintain their current 25% share in industry's turnover

TRL Band	Recommended instruments & interventions
TRL 1-3 Idea to lab proof	<ul style="list-style-type: none"> Dedicated innovation fund: A pooled pre-seed EV innovation fund blending public R&D grants with corporate CSR/VC catalytic capital Challenge-based innovation prizes: Modeled on global ARPA-E/EIC calls, prize-based competitions for EV MSME innovations in motor design, battery packaging, and electronics. Similar to China's "Little Giants" program which certifies high-tech SMEs for preferential loans, subsidies, and research partnerships – demonstrating how early-stage public support plus recognition can unlock MSME innovation.
TRL 4-6 Prototype to pilot in a relevant environment	<ul style="list-style-type: none"> Blended-finance bridge funds: Structures that pair concessional debt or first-loss guarantees with private VC. Extended EvolutionS-type programs: Larger ticket sizes (₹2–5 crore vs. ₹50 lakh) through state incubators, tied to performance milestones OEM-backed pilot funds: Co-financing pools where OEMs and Tier-1s share pilot risk with MSMEs, ensuring order visibility Enhance utilization of equity fund from SIDBI: Simplify access and broaden eligibility for MSMEs while building readiness programs for equity investments to ensure fuller fund utilization
TRL 7-9 Pilot plant to commercial scale	<ul style="list-style-type: none"> MSME-tier PLI: Lower eligibility thresholds (e.g., ₹50 crore revenue instead of ₹500 crore) and milestone-based disbursal Interest subvention funds: Dedicated concessional loan window reducing MSME borrowing costs from ~12–14% down to 7–8% Transition funds with co-investment: Government-backed cornerstone investors catalyzing family offices/DFIs into MSME tech-upgrade funds

The Automobile and Auto-Component PLI has been a valuable tool in boosting domestic EV manufacturing...

115 & 82

applications received and shortlisted respectively across OEMs and s

18 & 4

OEMs received approval for individual products and received incentive payouts respectively

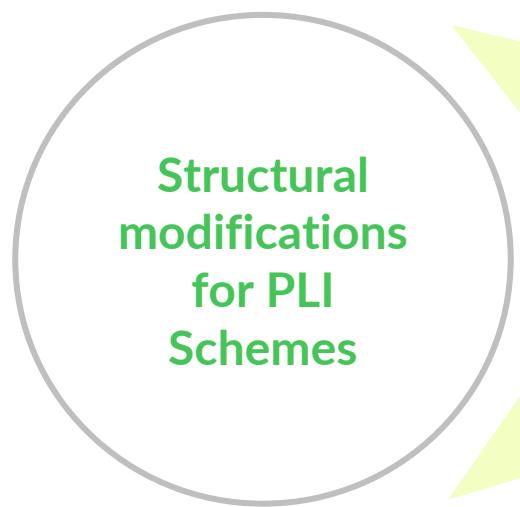
INR 25K Cr

committed as investments under the scheme till December 2024

INR 322 Cr

disbursed as incentives till March 2025

...however, the EV ecosystem faces some challenges in effective fund disbursal under such PLI schemes


PLI list currently anchored towards legacy players:

- **High threshold requirements** (INR 10K Cr annual revenue for OEMs and INR 500 Cr for s) limit startup and MSME participation
- Non-PLI status for such players results in **challenges in accessing finance and investments**, resulting in **12-16% operational disadvantages** compared to PLI awardees
- This could further **stifle innovation** and limit **risk appetite** amidst startups, limiting innovation in the EV sector

Current PLI structure is narrow in its focus on outcomes:

- Current structure of the scheme doesn't incentivize **ecosystem level development**, due to narrow focus limited to **DVA in manufactured goods**
- However, there are other, equivalently critical outcomes that can be tied to the PLIs – for e.g. R&D, Workforce, Exports)

1
Separate set of threshold limits for small-scale actors

- Re-evaluate PLI process and eligibility criteria to make them friendly to startups and MSMEs
- PLI status could enable access to finance and investment for non-legacy actors, facilitating innovation in the sector

2
Tie PLI requirements to other critical sector outcomes

- Expand fund disbursement metrics to track broader ecosystem outcomes (e.g., number of patents filed, job creation, export volume)
- Widening PLI focus could result in innovation and scale-up across upstream (REOs, Rare Earth Magnets) and downstream segments (new-tech based components)

Financing costs could also be lowered via concessional capital from DFIs, MDBs, bilateral funding, and lowering domestic borrowing costs through credit guarantees, concessional lines of credit, among others

NON-EXHAUSTIVE

An enabling environment could be created to facilitate tapping of domestic and international capital sources at concessional rates – targeted policies for EV and other cleantech manufacturers required

Developing **structured bonds** with DFIs and MDBs **blending INR and foreign currency** denominated tranches to fund projects requiring significant imports of capital machinery

Easing access to equity capital by **relaxing exchange listing requirements** on profitability for EV manufacturers to reflect their longer path to profitability

Leveraging DFI, Multilateral concessional capital potentially backed by EU, bilateral guarantees, E.g. EU Global Gateway strategy, India-ETFA TEPA

Relaxing regulations to enable pension and insurance funds **invest up to specified limits in lower credit ratings**

Utilizing GIFT-IFSC's regulatory flexibility and lower transaction costs for green/transition bond listings and attracting foreign equity

Structured guarantee instruments and **grants to reduce guarantee fees** to promote green bond issuances among first time issuers

Establishing **targeted Cleantech or Energy Transition Indices** to promote passive investment through mutual funds

Extending Priority Sector Lending and **concessional line of credit** to banks for EV manufacturing (similar to China's CERF program)

Thank you!

Disclaimer and Use Restriction notice

This document has been prepared by Dalberg Development Advisors Private Limited (“Dalberg”) and contains strictly confidential, proprietary, and commercially sensitive information. It is intended solely for the exclusive and internal use of the designated recipient(s) in connection with a specific advisory engagement.

The content, data, analysis, methodologies, and intellectual property contained herein are the sole property of Dalberg and are protected under applicable copyright, trade secret, and other intellectual property laws. Any reproduction, distribution, dissemination, disclosure, copying, or use of this material-whether in whole or in part, and whether in its original form or any modified form-without the prior written consent of Dalberg is strictly prohibited.

This document not be shared with, or disclosed to, any third party- including but not limited to competitors, partners, vendors, or affiliates - without express written authorization from Dalberg. Unauthorized use or disclosure of this material may result in appropriate legal action.

